
MATLAB® Builder for Java™ 2

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Builder for Java User’s Guide

© COPYRIGHT 2006–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 1.0 (Release 2006b)
March 2007 Online only Revised for Version 1.1 (Release 2007a)
September 2007 Online only Revised for Version 2.0 (Release 2007b)

Contents

Getting Started

1
What Is MATLAB Builder for Java? 1-2

Before You Begin . 1-3
What You Need To Know . 1-3
Configuring Your Environment . 1-3
Starting MATLAB Builder for Java 1-5
Overview of MATLAB Compiler . 1-5
What Is the Deployment Tool? . 1-6

Essential Steps to Deploying a Java Builder
Component . 1-7
Create a Deployable Java Builder Component 1-7
Package Your Java Component . 1-7
Distribute Your Java Component . 1-8
Customize Your Java Component . 1-8

Deploying a Component . 1-9
Magic Square Example . 1-9
Create a Deployable Java Component 1-10
Package Your Java Application . 1-13
Developing Your Application . 1-14

Next Steps . 1-16

Concepts

2
What Is a Project? . 2-2

Overview . 2-2
Classes and Methods . 2-2

v

Naming Conventions . 2-3

How Does MATLAB Builder for Java Use JAR Files? . . 2-4

How Does MATLAB Builder for Java Handle Data? . . . 2-5
Java Builder API . 2-5
Understanding the API Data Conversion Classes 2-5
Automatic Conversion to MATLAB Types 2-7
Understanding Function Signatures Generated by Java

Builder . 2-7
Returning Data from MATLAB to Java 2-9

What Happens in the Build Process? 2-10

What Happens in the Package Process? 2-11

How Does Component Deployment Work? 2-12

Programming

3
Import Classes . 3-3

Creating an Instance of the Class 3-4
What is an Instance? . 3-4
Code Fragment: Instantiating a Java Class 3-4

Passing Arguments to and from Java 3-8
The Format . 3-8
Manual Conversion of Data Types . 3-8
Automatic Conversion to a MATLAB Type 3-9
Specifying Optional Arguments . 3-11
Handling Return Values . 3-16

Passing Java Objects by Reference 3-22
MATLAB Array . 3-22

vi Contents

Wrappering and Passing Java Objects to M-Functions with
MWJavaObjectRef . 3-22

Handling Errors . 3-28
Error Overview . 3-28
Handling Checked Exceptions . 3-28
Handling Unchecked Exceptions . 3-31

Managing Native Resources . 3-34
What are Native Resources? . 3-34
Using Garbage Collection Provided by the JVM 3-34
Using the dispose Method . 3-35
Overriding the Object.Finalize Method 3-37

Handling Data Conversion Between Java and
MATLAB . 3-38
Overview . 3-38
Calling MWArray Methods . 3-38
Creating Buffered Images From a MATLAB Array 3-39

Setting Java Properties . 3-40
How to Set Java System Properties 3-40
Ensuring a Consistent GUI Appearance 3-40

Blocking Execution of a Console Application that
Creates Figures . 3-42
waitForFigures Method . 3-42
Code Fragment: Using waitForFigures to Block Execution

of a Console Application . 3-43

Ensuring Multi-Platform Portability 3-45

Using MCR Component Cache and
MWComponentOptions . 3-47
MWComponentOptions . 3-47
Select Options . 3-47
Set Options . 3-48

Learning About Java Classes and Methods by Exploring
the Javadoc . 3-50

vii

Using Classes and Methods

4
Guidelines for Working with MWArray Classes 4-2

Overview of the MWArray API . 4-2
Understanding the MWArray Base Class 4-2
Constructing Numeric Arrays . 4-8
Working with Logical Arrays . 4-22
Working with Character Arrays . 4-26
Working with Cell Arrays . 4-31
Working with Struct Arrays . 4-37

Using Class Methods . 4-48
Using MWArray . 4-48
Using MWNumericArray . 4-69
Using MWLogicalArray . 4-105
Using MWCharArray . 4-121
Using MWStructArray . 4-132
Using MWCellArray . 4-149
Using MWClassID . 4-163
Using MWComplexity . 4-166

Sample Java Applications

5
Plot Example . 5-2

Spectral Analysis Example . 5-8

Matrix Math Example . 5-16
Example Overview . 5-16
MATLAB Functions to Be Encapsulated 5-17
Understanding the getfactor Program 5-26

Phonebook Example . 5-28
The makephone Function . 5-28
Phonebook Example: Step-by-Step Procedure 5-28

viii Contents

Buffered Image Creation Example 5-37

Optimization Example . 5-42
About This Example . 5-42
The OptimDemo Component . 5-42
Optimization Example: Step-by-Step Procedure 5-43

Deploying a Java Component Over the Web

6
Creating a Deployable Web Application 6-2

Example Overview . 6-2
Before You Begin . 6-2
Download the Demo Files . 6-3
Build Your Java Component . 6-4
Compile Your Java Code . 6-5
Generating the Web Archive (WAR) File 6-5
Running the Web Deployment Demo 6-6
Using the Web Application . 6-6

Delivering Interactive Graphics Over the Web with
WebFigures . 6-9
Before You Begin . 6-9
Download the Example Files . 6-9
The WebFigures Feature . 6-9
Preparing to Implement WebFigures 6-10
Implementing WebFigures . 6-16
End-User Interaction with WebFigures 6-24

Creating Scalable Web Applications With RMI 6-26
Using RMI . 6-26
Before You Begin . 6-27
Running Client and Server On a Single Machine 6-27
Running Client and Server On Separate Machines 6-30

ix

Reference Information for Java

7
Requirements for MATLAB Builder for Java 7-2

System Requirements . 7-2
Limitations and Restrictions . 7-2
Settings for Environment Variables (Development

Machine) . 7-2

Data Conversion Rules . 7-7
Java to MATLAB Conversion . 7-7
MATLAB to Java Conversion . 7-9
Unsupported MATLAB Array Types 7-10

Programming Interfaces Generated by Java Builder . . 7-11
APIs Based on MATLAB Function Signatures 7-11
Standard API . 7-12
mlx API . 7-14
Code Fragment: Signatures Generated for myprimes

Example . 7-14

MWArray Class Specification . 7-16

Using the Command-Line Interface 7-17

Functions — Alphabetical List

8

Examples

A
Handling Data . A-2

Handling Errors . A-2

x Contents

Handling Memory . A-2

COM Components . A-3

Sample Applications (Java) . A-3

Index

xi

xii Contents

1

Getting Started

What Is MATLAB Builder for Java?
(p. 1-2)

Overview of the product

Before You Begin (p. 1-3) Other products you need or might
want to use with MATLAB Builder
for Java

Essential Steps to Deploying a Java
Builder Component (p. 1-7)

Overview of the basic workflow

Deploying a Component (p. 1-9) Example of how to deploy an
application with MATLAB® Builder
for Java

Next Steps (p. 1-16) Where to find related concepts,
techniques, examples, and reference
information

1 Getting Started

What Is MATLAB Builder for Java?
MATLAB® Builder for Java (also called Java Builder) is an extension to
MATLAB® Compiler. Use Java Builder to wrap MATLAB® functions into
one or more Java classes that make up a Java component, or package. Each
MATLAB function is encapsulated as a method of a Java class and can be
invoked from within a Java application.

When you package and distribute the application to your users, supporting
files generated by Java Builder are included as well as the MATLAB
Component Runtime (MCR), which is provided by MATLAB Compiler. Your
users do not have to purchase and install MATLAB.

1-2

Before You Begin

Before You Begin

In this section...

“What You Need To Know” on page 1-3

“Configuring Your Environment” on page 1-3

“Starting MATLAB Builder for Java” on page 1-5

“Overview of MATLAB Compiler” on page 1-5

“What Is the Deployment Tool? ” on page 1-6

What You Need To Know
The following technical knowledge is required to use MATLAB Builder for
Java:

• Java Builder requires MATLAB. This documentation assumes that you
know how to work with MATLAB cell arrays and structures.

• It is helpful to be familiar with the Java programming language, MS-DOS
or UNIX command syntax, and Object Oriented programming concepts,
but it is not necessary.

• MATLAB Builder for Java does not support MATLAB object data types
(for example, Time Series objects).

Configuring Your Environment
Configure your environment to work with the supplied example files and set
up your Java environment.

Setting Up Your Java Environment

1 Ensure your Java Runtime Environment and JDK are compatible
with Sun Microsystems, Inc’s JDK Version 1.6.0. The MathWorks
recommends using the Java Runtime Environment (JRE) shipped with
MATLAB (matlabroot\sys\java\jre\architecture\jre.cfg), where
architecture is the name of the directory that is associated with the
platform on which you run MATLAB, for example, Win32 or Win64.

1-3

1 Getting Started

Download JDK Version 1.6 from Sun Microsystems, Inc. if you do not yet
have it installed.

2 Set the JAVA_HOME variable to the location of your installed JDK (Java
Developer’s Kit).

At the command prompt, enter:

set JAVA_HOME=JDK_pathname

where JDK_pathname is the path to your installed JDK. The JDK should be
compatible with Sun JDK version 1.6.0.

Alternately, you can use the setenv command from MATLAB. To do this,
start MATLAB and issue the following at the MATLAB Command Prompt:

setenv('JAVA_HOME','JDK_pathname')

Note Optimally, JAVA_HOME should be defined as an environment variable
to ensure maximum versatility and usability.

3 At the MATLAB command prompt, enter getenv JAVA_HOME. The answer
returned by MATLAB should match the JAVA_HOME location you previously
set.

Preparing To Use the Example Files

1 Copy the Java Builder examples to a work directory, including the M
application makesqr.m and the Java demo application getmagic.java.

a. Navigate to
matlabroot\toolbox\javabuilder\Examples\MagicSquareExample.
To determine what path matlabroot is set to, enter matlabroot at
the MATLAB command line.

b. Create a local work directory named javabuilder_examples. In this
example, this directory is on the local Windows D: drive.

1-4

http://www.sun.com

Before You Begin

c. Create a subdirectory under javabuilder_examples named
magicsquare.

d. Copy the contents of the MagicSquareExample directory to
D:\javabuilder_examples\magicsquare.

2 Using a system command prompt, navigate to \javabuilder_
examples\magicsquare by switching to the D: drive and entering:

cd \javabuilder_examples\magicsquare

Starting MATLAB Builder for Java
MATLAB Builder for Java is accessed through the Deployment Tool interface.

To open the Deployment Tool, start MATLAB and type deploytool at the
command prompt in the MATLAB Command Window.

Overview of MATLAB Compiler
Use MATLAB® Compiler to convert MATLAB® programs to applications
and libraries that you can distribute to end users who do not have MATLAB
installed. You can compile M-files, MEX-files, or other MATLAB code.
MATLAB Builder for Java supports all the features of MATLAB, including
objects, private functions, and methods. Using MATLAB Builder for Java you
can generate the following:

• Standalone C and C++ applications on UNIX, Windows, and Macintosh
platforms

• C and C++ shared libraries (dynamically linked libraries, or DLLs, on
Microsoft Windows)

Use the mcc command to invoke MATLAB Builder for Java. Alternatively, you
can use the graphical user interface for MATLAB Builder for Java by issuing
the following command at the MATLAB prompt:

deploytool

1-5

1 Getting Started

What Is the Deployment Tool?
The Deployment Tool is the GUI to MATLAB Compiler. Use the Deployment
Tool to perform the tasks in the following illustration.

1-6

Essential Steps to Deploying a Java Builder Component

Essential Steps to Deploying a Java Builder Component

In this section...

“Create a Deployable Java Builder Component” on page 1-7

“Package Your Java Component” on page 1-7

“Distribute Your Java Component” on page 1-8

“Customize Your Java Component” on page 1-8

Create a Deployable Java Builder Component
A Java Builder component is a self-contained Java application (.jar file)
that can be deployed to other computers. Note that as of R2007b, the CTF
file is now embedded in the JAR file for convenient deployment. For more
information, see “How Does MATLAB Builder for Java Use JAR Files?” on
page 2-4

To create your component, do the following:

1 Run the Build function of deploytool to encapsulate your M-code into
a Java class.

2 Compile your Java program with the javac command.

3 Test your program by executing it with the java command.

Package Your Java Component
Packaging your Java component involves including the following key
elements, in addition to your Java component, which are essential for
deployment on other machines:

• The .jar file (which includes the CTF archive) contains all Java files
needed to deploy the application.

• The MCR Installer (if the Include MCR option was selected when the
component was built) is a self-contained runtime executable capable
of running an instance of MATLAB on a computer that does not have
MATLAB installed.

1-7

1 Getting Started

• Documentation generated by the Sun™ Microsystems Javadoc tool is
included that details how the Java classes and methods referenced in your
application can be further customized and includes detailed examples of
implementation.

Distribute Your Java Component
Finally, make the component available to end users through one of the
following mechanisms:

• Distribute the component privately using external storage media or e-mail.

• Make the component available over a local area network.

• Use the Web to remotely distribute the component.

Customize Your Java Component
Finally, customize your component before you distribute it to your end users.
Some of the things you will want to do include:

• Importing Java classes and MATLAB libraries into existing code

• Creating an instance of, or instantiating, a Java class

• Calling class methods from Java

1-8

Deploying a Component

Deploying a Component

In this section...

“ Magic Square Example” on page 1-9

“Create a Deployable Java Component” on page 1-10

“Package Your Java Application ” on page 1-13

“Developing Your Application” on page 1-14

Magic Square Example
In this section, you will step through an example of how a simple M-code
function can be transformed into a deployable Java Builder component.

The Magic Square example shows you how to create a Java component
(magicsquare), which contains the magic class, a .jar file, and other files
needed to deploy your application. The class encapsulates a MATLAB
function, makesqr, which computes a magic square. It represents the magic
square as a two-dimensional array.

The client Java application, getmagic.java converts the array returned by
makesqr to a native array and displays it on the screen.

When you run the getmagic application from the command line, you can pass
the dimension for the magic square as a command-line argument.

About the Examples The examples for MATLAB Builder for Java are in
matlabroot\toolbox\javabuilder\Examples. In most examples, Windows
syntax is featured (backslashes, instead of forward slashes).

The examples in this section utilize the deploytool command. For
information about how to perform these examples using the mcc command,
see “Using the Command-Line Interface” on page 7-17.

1-9

1 Getting Started

Create a Deployable Java Component

1 Create a new deployment project.

a. Start the Deployment Tool if you have not already done so.
See“Starting MATLAB Builder for Java” on page 1-5 for details.

b. Click in the Deployment Tool toolbar. Alternatively you can select
File > New Deployment Project from the MATLAB menu bar.

c. In the navigation pane (the left pane), select MATLAB Builder for
Java as the product you want to use to create the deployment project.

d. From the component list (the right pane), select Java Package as the
kind of component you want to create.

e. Click Browse to select the location for your project. In this case, use
D:\javabuilder_examples\magicsquare.

f. Enter magicsquare as the project name and click OK. By default, the
project name is also the component name.

2 Customize the project settings as needed.

a. Right-click the folder under the project folder (the class folder), which
represents the Java class you are going to create (currently named
magicsquareclass), and select Rename Class.

b. Enter magic as the new name of the class and press Enter.

c. In the Current Directory pane of MATLAB, navigate to
D:\javabuilder_examples\magic_square\MagicDemoComp.

d. Add the makesqr.m file in the MagicDemoComp directory to the project
by dragging this file from the Current Directory pane in the
MATLAB desktop to the renamed magic folder in the Deployment
Tool pane.

e. In the Deployment Tool pane, ensure that the Generate Verbose
Output option is selected.

f. Save the project by clicking in the Deployment Tool toolbar.

3 Build the project, creating your initial Java component.

Build the project by clicking in the Deployment Tool toolbar.

1-10

Deploying a Component

The build process begins, and a log of the build is created. Files are
generated in two directories, src and distrib, within the project directory.
The paths to these directories are defined in the Deployment Project
Settings dialog. A copy of the build log is placed in the src directory.

4 After you have built your Java class, examine it by
navigating to the directory D:\javabuilder_examples\
magicsquare\magicsquare, and inspect the contents of the newly created
src and distrib directories.

• The src directory contains the generated Java source.

• The distrib directory contains a Java archive (.jar) file that will be
distributed with your deployed application.

5 At the system command prompt, enter one of the following commands:

Caution When entering these commands, ensure single spaces are
inserted at the end of each line below.

• On Windows:

%JAVA_HOME%/bin/javac -classpath

matlabroot\toolbox\javabuilder\jar\javabuilder.jar;.\magicsquare\distrib\magicsquare.jar

.\MagicDemoJavaApp\getmagic.java

• On UNIX:

$JAVA_HOME/bin/javac -classpath

.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:./magicsquare/distrib/magicsquare.jar

./MagicDemoJavaApp/getmagic.java

6 When you run getmagic, you pass an input argument representing
the dimension for the magic square. In this example, the value for the
dimension is 5. The program converts the number passed on the command
line to a scalar double value, creates an instance of class magic, and calls

1-11

1 Getting Started

the makesqr method on that object. The method computes the square using
the MATLAB magic function.

Run getmagic by doing the following:

a Copy getmagic.class to your work directory.

b Enter one of the following commands at the system command prompt:

• On Windows:

matlabroot\sys\java\jre\architecture\jre_directory\bin\java

-classpath

.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;.\magicsquare\distrib\magicsquare.jar

getmagic 5

• On UNIX:

matlabroot/sys/java/jre/architecture/jre_directory/bin/java

-classpath

.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:./magicsquare/distrib/magicsquare.jar

getmagic 5

Note jre_directory refers to the directory described in “Setting
Up Your Java Environment” on page 1-3. To test directly against
the MCR, substitute mcrroot for matlabroot, where mcrroot is the
location where the MCR is installed on your system. An example of an
MCR root location is: D:\Applications\MATLAB\MATLAB Component
Runtime\MCR_version_number. Remember to double-quote all parts of the
java command path arguments that contain spaces.

7 Verify the program output. If the program ran successfully, a magic square
of order five will print, as follows:

Magic square of order 5

1-12

Deploying a Component

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

Package Your Java Application
When you package the application for your users, you must include supporting
files generated by Java Builder as well as the MATLAB Component Runtime
(MCR), which is provided by MATLAB Compiler. After you have built and
packaged a few test Java components with the Magic Square example,
follow this procedure to distribute your own applications to the rest of your
enterprise computing environment.

For more details on these steps, see “Developing Your Application” on page
1-14.

Note You must repeat these steps for each development machine where you
want to use the components.

Step 1 is optional if you are developing your application on the same machine
where you created the Java component.

1 If the component is not already installed on the machine where you want to
develop your application, unpack and install the component as follows:

a. Copy the package that you created.

b. If the package is a self-extracting executable, paste the package in a
directory on the development machine, and run it. If the package is a
.zip file, unzip and extract the contents to the development machine.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 7-2.

3 Import the MATLAB libraries and the component classes into your code
with the Java import function. For example:

1-13

1 Getting Started

import com.mathworks.toolbox.javabuilder.*;
import componentname.classname; or import componentname.*;

4 Instantiate a Java Builder class using the Java new operator to create an
instance of each class you want to use in the application.

5 Call the class methods, mapping the names of your M-functions to Java
methods.

6 Handle data conversion as needed.

When you invoke a method on a Java Builder component, the input
parameters received by the method must be in the MATLAB internal array
format. You can either (manually) convert them yourself within the calling
program, or pass the parameters as Java data types.

• To manually convert to one of the standard MATLAB data types, use
MWArray classes in the package com.mathworks.toolbox.javabuilder.

• If you pass them as Java data types, they are automatically converted.

7 Build and test the Java application as you would any application.

Developing Your Application
After you create and distribute the initial application, you will want to
continue to enhance it. Use the following Java “basics”:

Importing Classes
You must import the MATLAB libraries and your own Java classes into your
code. Use the Java import function to do this.

For the magicsquare example, the following statements perform the
necessary actions:

import com.mathworks.toolbox.javabuilder.*;
import magicsquare.*;

1-14

Deploying a Component

Creating an Instance of the Class
As with all Java classes, you must use the new function to create an instance
of a class. To create an object (theMagic) from the magic class, the example
application uses the following code:

theMagic = new magic();

Calling Class Methods from Java
After you have instantiated the class, you can call a class method as you
would with any Java object. In the Magic Square example, the makesqr
method is called as shown:

result = theMagic.makesqr(1, n);

where n is an instance of an MWArray class. Note that the first argument
expresses number of outputs (1) and succeeding arguments represent inputs
(n).

See the following code fragment for the declaration of n:

n = new MWNumericArray(Double.valueOf(args[0],
MWClassID.DOUBLE);

1-15

1 Getting Started

Next Steps

Understanding concepts needed to
use MATLAB Builder for Java

“What Is a Project?” on page 2-2

Writing Java applications that
can access Java methods that
encapsulate M-code

“Import Classes ” on page 3-3

Sample applications that access
methods developed in MATLAB

“Plot Example” on page 5-2

Reference information about
automatic data conversion rules

“Data Conversion Rules” on page 7-7

1-16

2

Concepts

A component created by MATLAB Builder for Java is a stand-alone Java
package (.jar file). The package contains one or more Java classes that
encapsulate M-code. The classes provide methods that are callable directly
from Java code.

To use MATLAB Builder for Java, you create a project, which specifies the
M-code to be used in the components that you want to create. Java Builder
supports data conversion between Java types and MATLAB types.

For more information about these concepts and about how the product works,
see the following topics:

What Is a Project? (p. 2-2) How MATLAB Builder for Java uses
the specifications in a project

How Does MATLAB Builder for Java
Use JAR Files? (p. 2-4)

Understand how Java Builder
utilizes JAR files in the deployment
process

How Does MATLAB Builder for Java
Handle Data? (p. 2-5)

How MATLAB Builder for Java
supports data conversion between
Java types and MATLAB types

What Happens in the Build Process?
(p. 2-10)

Details about the process of building
a Java component

What Happens in the Package
Process? (p. 2-11)

Details about the packaging process

How Does Component Deployment
Work? (p. 2-12)

Details about deploying to an end
user

2 Concepts

What Is a Project?

In this section...

“Overview” on page 2-2

“Classes and Methods ” on page 2-2

“Naming Conventions” on page 2-3

Overview
A Java Builder project contains information about the files and settings
needed by MATLAB Builder for Java to create a deployable Java component.
A project specifies information about classes and methods, including the
MATLAB functions to be included.

Classes and Methods
Java Builder transforms MATLAB functions that are specified in the
component’s project to methods belonging to a Java class.

When creating a component, you must provide one or more class names as
well as a component name. The class name denotes the name of the class
that encapsulates MATLAB functions.

To access the features and operations provided by the MATLAB functions,
instantiate the Java class generated by Java Builder, and then call the
methods that encapsulate the MATLAB functions.

Note When you add files to a project, you do not have to add any M-files for
functions that are called by the functions that you add. When Java Builder
builds a component, it automatically includes any M functions called by the
functions that you explicitly specify for the component. See “Spectral Analysis
Example” on page 5-8 for a sample application that illustrates this feature.

2-2

What Is a Project?

Naming Conventions
Typically you should specify names for components and classes that will be
clear to programmers who use your components. For example, if you are
encapsulating many MATLAB functions, it helps to determine a scheme of
function categories and to create a separate class for each category. Also, the
name of each class should be descriptive of what the class does.

Valid characters are any alpha or numeric characters, as well as the
underscore (_) character.

2-3

2 Concepts

How Does MATLAB Builder for Java Use JAR Files?
As of R2007b, Java Builder now embeds the CTF archive within the generated
JAR file, by default. This offers convenient deployment of a single output file
since all encrypted M-file data is now contained within this Java archive.

For information on how to produce a separate CTF archive and JAR
file (the default behavior prior to R2007b), see “Using MCR Component
Cache and MWComponentOptions” on page 3-47 and learn how to use
the MWCtfExtractLocation.EXTRACT_TO_COMPONENT_DIR value with the
ExtractLocation option of MWComponentOptions.

2-4

How Does MATLAB Builder for Java Handle Data?

How Does MATLAB Builder for Java Handle Data?

In this section...

“Java Builder API” on page 2-5

“Understanding the API Data Conversion Classes” on page 2-5

“Automatic Conversion to MATLAB Types” on page 2-7

“Understanding Function Signatures Generated by Java Builder” on page
2-7

“Returning Data from MATLAB to Java” on page 2-9

Java Builder API
To enable Java applications to exchange data with MATLAB methods
they invoke, Java Builder provides an API, which is implemented as the
com.mathworks.toolbox.javabuilder.MWArray package. This package
provides a set of data conversion classes derived from the abstract class,
MWArray. Each class represents a MATLAB data type.

Understanding the API Data Conversion Classes
When writing your Java application, you can represent your data using
objects of any of the data conversion classes. Alternatively, you can use
standard Java data types and objects.

The data conversion classes are built as a class hierarchy that represents the
major MATLAB array types.

2-5

2 Concepts

Note This discussion provides conceptual information about the classes.

For usage information, see Chapter 4, “Using Classes and Methods”.

For reference information, see com.mathworks.toolbox.javabuilder.

This discussion assumes you have a working knowledge of the Java
programming language and the Java Software Development Kit (SDK). This
is not intended to be a discussion on how to program in Java. Refer to the
documentation that came with your Java SDK for general programming
information.

Overview of Classes and Methods in the Data Conversion
Class Hierarchy
The root of the data conversion class hierarchy is the MWArray abstract
class. The MWArray class has the following subclasses representing the
major MATLAB types: MWNumericArray, MWLogicalArray, MWCharArray,
MWCellArray, and MWStructArray.

Each subclass stores a reference to a native MATLAB array of that type.
Each class provides constructors and a basic set of methods for accessing
the underlying array’s properties and data. To be specific, MWArray and the
classes derived from MWArray provide the following:

• Constructors and finalizers to instantiate and dispose of MATLAB arrays

• get and set methods to read and write the array data

• Methods to identify properties of the array

• Comparison methods to test the equality or order of the array

• Conversion methods to convert to other data types

Advantage of Using Data Conversion Classes
The MWArray data conversion classes let you pass native type parameters
directly without using explicit data conversion. If you pass the same array

2-6

How Does MATLAB Builder for Java Handle Data?

frequently, you might improve the performance of your program by storing
the array in an instance of one of the MWArray subclasses.

Automatic Conversion to MATLAB Types

Note Because the conversion process is automatic (in most cases), you do not
need to understand the conversion process to pass and return arguments with
MATLAB Builder for Java components.

When you pass an MWArray instance as an input argument, the encapsulated
MATLAB array is passed directly to the method being called.

In contrast, if your code uses a native Java primitive or array as an input
parameter, Java Builder converts it to an instance of the appropriate
MWArray class before it is passed to the method. Java Builder can convert
any Java string, numeric type, or any multidimensional array of these
types to an appropriate MWArray type, using its data conversion rules. See
“Data Conversion Rules” on page 7-7 for a list of all the data types that are
supported along with their equivalent types in MATLAB.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

Note There are some data types commonly used in MATLAB that are
not available as native Java types. Examples are cell arrays and arrays of
complex numbers. Represent these array types as instances of MWCellArray
and MWNumericArray, respectively.

Understanding Function Signatures Generated by
Java Builder
The Java programming language now supports optional function arguments
in the way that MATLAB does with varargin and varargout. To support
this feature of MATLAB, Java Builder generates a single overloaded Java
method that accomodates any number of input arguments. This behavior

2-7

2 Concepts

is an enhancement over previous versions of varargin support that only
handled a limited number of arguments.

Note In addition to handling optional function arguments, the overloaded
Java methods that wrap MATLAB functions handle data conversion. See
“Automatic Conversion to MATLAB Types” on page 2-7 for more details.

Understanding MATLAB Function Signatures
As background, recall that the generic MATLAB function has the following
structure:

function [Out1, Out2, ..., varargout]=foo(In1, In2, ..., varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

Each argument represents a MATLAB type. When you include the varargin
or varargout argument, you can specify any number of inputs or outputs
beyond the ones that are explicitly declared.

Overloaded Methods in Java That Encapsulate M-Code
When MATLAB Builder for Java encapsulates your M-code, it creates an
overloaded method that implements the MATLAB functions. This overloaded
method corresponds to a call to the generic MATLAB function for each
combination of the possible number and type of input arguments.

In addition to encapsulating input arguments, Java Builder creates another
method, which represents the output arguments, or return values, of the
MATLAB function. This additional overloaded method takes care of return
values for the encapsulated MATLAB function. This method of encapsulating
the information about return values simulates the mlx interface in MATLAB
Compiler.

2-8

How Does MATLAB Builder for Java Handle Data?

These overloaded methods are called the standard interface (encapsulating
input arguments) and the mlx interface (encapsulating return values). See
“Programming Interfaces Generated by Java Builder” on page 7-11 for details.

Returning Data from MATLAB to Java
All data returned from a method coded in MATLAB is passed as an instance
of the appropriate MWArray subclass. For example, a MATLAB cell array is
returned to the Java application as an MWCellArray object.

Return data is not converted to a Java type. If you choose to use a Java type,
you must convert to that type using the toArray method of the MWArray
subclass to which the return data belongs.

2-9

2 Concepts

What Happens in the Build Process?

Note MATLAB Builder for Java uses the JAVA_HOME variable to locate the
Java Software Development Kit (SDK) on your system. The compiler uses
this variable to set the version of the javac.exe command it uses during
compilation.

To create a component, Java Builder does the following:

1 Generates Java code to implement your component. The files are as follows:

myclass.java Contains a Java class with methods
encapsulating the M-functions specified in
the project for that class.

mycomponentMCR.java Contains the CTF decryption keys and code
to initialize the MCR for the component.

2 Compiles the Java code produced in step 1.

3 Generates /distrib and /src subdirectories.

4 Invokes the Jar utility to package the Java class files it has created into a
Java archive file (mycomponent.jar).

2-10

What Happens in the Package Process?

What Happens in the Package Process?
The packaging process creates a self-extracting executable (on Windows
platforms) or a .zip file (on platforms other than Windows). The package
contains at least the following:

• The Java Builder component

• The MCR Installer (if the Install MCR option was selected when the
component was built)

• Documentation generated by Sun Microsystems Inc.’s Javadoc tool

Note The packaging process is not available when using mcc directly.

Note When you use Java Builder to create classes, you must create those
classes on the same operating system to which you are deploying them for
development (or for use by end users running an application). For example,
if your goal is to deploy an application to end users to run on Windows, you
must create the Java classes with Java Builder running on Windows.

The reason for this limitation is that although the .jar file itself might be
platform independent, the .jar file is dependent on the .ctf file, which
is not platform independent.

2-11

2 Concepts

How Does Component Deployment Work?
There are two kinds of deployment:

• Installing components and setting up support for them on a development
machine so that they can be accessed by a developer who seeks to use them
in writing a Java application.

• Deploying support for the components when they are accessed at run time
on an end-user machine.

To accomplish this kind of deployment, you must make sure that the
installer you create for the application takes care of supporting the Java
components on the target machine. In general, this means the MCR must
be installed, on the target machine. You must also install the Java Builder
component.

2-12

3

Programming

To access a Java component built and packaged by MATLAB Builder for
Java, you must first unpack and install components so you can use them on
a particular machine.

Then you perform the following programming tasks:

Import Classes (p. 3-3) How to reference the classes

Creating an Instance of the Class
(p. 3-4)

Sample code for instantiating a class
that encapsulates MATLAB code

Passing Arguments to and from Java
(p. 3-8)

How to match up data types between
MATLAB and Java

Passing Java Objects by Reference
(p. 3-22)

Information on passing Java objects
by reference with MWJavaObjectRef

Handling Errors (p. 3-28) How to handle an error generated by
MATLAB

Managing Native Resources (p. 3-34) How to free memory used by the
MWArray data conversion classes

Handling Data Conversion Between
Java and MATLAB (p. 3-38)

Call signatures for passing
arguments and returning output

Setting Java Properties (p. 3-40) How to manage the properties of
Java GUI interfaces that you create

Blocking Execution of a Console
Application that Creates Figures
(p. 3-42)

How to handle interaction in a
console-based program that creates
MATLAB figures

3 Programming

Ensuring Multi-Platform Portability
(p. 3-45)

Learn how to ensure platform
independence if your CTF archive
contains MEX files

Using MCR Component Cache and
MWComponentOptions (p. 3-47)

Save network storage space by
learning how to store components
locally, or control how the CTF
archive is managed and stored.

Learning About Java Classes and
Methods by Exploring the Javadoc
(p. 3-50)

How to search for information on
Java classes and methods used
with Java Builder by searching the
Javadoc

Note For conceptual information that might help you in approaching these
tasks, see Chapter 2, “Concepts”.

For examples of these tasks, see Chapter 5, “Sample Java Applications”.

For information about deploying your application after you complete these
tasks, see “How Does Component Deployment Work?” on page 2-12.

3-2

Import Classes

Import Classes
To use a component generated by MATLAB Builder for Java, you must do
the following:

1 Import MATLAB libraries with the Java import function, for example:

import com.mathworks.toolbox.javabuilder.*;

2 Import the component classes created by Java Builder, for example:

import com.mathworks.componentname.classname;

Note It is important to note the difference between the component and the
package names. The component name is the last part of the full package
name, and is what is used in the .JAR file (and the embedded CTF file within
the JAR). For example, in mcc -W java:com.mathworks.demos,HelloDemo
hello.m the component name is demos and the package name is
com.mathworks.demos. The import statement should include the full
package name: import com.mathworks.demos.HelloDemo;

Note When you use Java Builder to create classes, you must create those
classes on the same operating system to which you are deploying them for
development (or for use by end users running an application). For example,
if your goal is to deploy an application to end users to run on Windows, you
must create the Java classes with Java Builder running on Windows.

The reason for this limitation is that although the .jar file itself might be
platform-independent, the .jar file is dependent on the .ctf file, which
is intrinsically platform dependent. It is possible to make your .ctf file
platform independent in certain circumstances; see “Ensuring Multi-Platform
Portability” on page 3-45 for more details.

3-3

3 Programming

Creating an Instance of the Class

In this section...

“What is an Instance?” on page 3-4

“Code Fragment: Instantiating a Java Class” on page 3-4

What is an Instance?
As with any Java class, you need to instantiate the classes you create with
MATLAB Builder for Java before you can use them in your program.

Suppose you build a component named MyComponent with a class named
MyClass. Here is an example of creating an instance of the MyClass class:

MyClass ClassInstance = new MyClass();

Code Fragment: Instantiating a Java Class
The following Java code shows how to create an instance of a class that was
built with MATLAB Builder for Java. The application uses a Java class that
encapsulates a MATLAB function, myprimes.

/*
* usemyclass.java uses myclass
*/

/* Import all com.mathworks.toolbox.javabuilder classes */
import com.mathworks.toolbox.javabuilder.*;

/* Import all com.mycompany.mycomponent classes */
import com.mycompany.mycomponent.*;

/*
* usemyclass class
*/

public class usemyclass
{

/** Constructs a new usemyclass */
public usemyclass()

3-4

Creating an Instance of the Class

{
super();

}

/* Returns an array containing the primes between 0 and n */
public double[] getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

catch (MWException e) {
// something went wrong while initializing the component - the
// MWException's message contains more information

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

}

The import statements at the beginning of the program import packages that
define all the classes that the program requires. These classes are defined in
javabuilder.* and mycomponent.*; the latter defines the class myclass.

The following statement instantiates the class myclass:

cls = new myclass();

The following statement calls the class method myprimes:

3-5

3 Programming

y = cls.myprimes(1, new Double((double)n));

The sample code passes a java.lang.Double to the myprimes method. The
java.lang.Double is automatically converted to the double data type
required by the encapsulated MATLAB myprimes function.

When myprimes executes, it finds all prime numbers between 0 and the input
value and returns them in a MATLAB double array. This array is returned
to the Java program as an MWNumericArray with its MWClassID property set
to MWClassID.DOUBLE.

The myprimes method encapsulates the myprimes function.

myprimes Function
The code for myprimes is as follows:

function p = myprimes(n)
% MYPRIMES Returns the primes between 0 and n.
% P = MYPRIMES(N) Returns the primes between 0 and n.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2007 The MathWorks, Inc.

if length(n) ~= 1
error('N must be a scalar');

end

if n < 2
p = zeros(1,0);
return

end

p = 1:2:n;
q = length(p);
p(1) = 2;

for k = 3:2:sqrt(n)
if p((k+1)/2)

3-6

Creating an Instance of the Class

p(((k*k+1)/2):k:q) = 0;
end

end

p = (p(p>0));

3-7

3 Programming

Passing Arguments to and from Java

In this section...

“The Format” on page 3-8

“Manual Conversion of Data Types” on page 3-8

“Automatic Conversion to a MATLAB Type” on page 3-9

“Specifying Optional Arguments” on page 3-11

“Handling Return Values” on page 3-16

The Format
When you invoke a method on a MATLAB Builder for Java component,
the input arguments received by the method must be in the MATLAB
internal array format. You can either convert them yourself within the
calling program, or pass the arguments as Java data types, which are then
automatically converted by the calling mechanism.

To convert them yourself, use instances of the MWArray classes; in this case
you are using manual conversion. Storing your data using the classes and
data types defined in the Java language means that you are relying on
automatic conversion. Most likely, you will use a combination of manual and
automatic conversion.

Manual Conversion of Data Types
To manually convert to one of the standard MATLAB data types, use the
MWArray data conversion classes provided by Java Builder. For class reference
information, see the com.mathworks.toolbox.javabuilder package. For
extensive usage information, see Chapter 4, “Using Classes and Methods”.

Code Fragment: Using MWNumericArray
The Magic Square example (“Deploying a Component” on page 1-9) exemplifies
manual conversion. The following code fragment from that program shows a
java.lang.Double argument that is converted to an MWNumericArray type
that can be used by the M-function without further conversion:

3-8

Passing Arguments to and from Java

MWNumericArray dims = null;
dims = new MWNumericArray(Double.valueOf(args[0]),

MWClassID.DOUBLE);

result = theMagic.makesqr(1, dims);

Code Fragment: Passing an MWArray. This example constructs an
MWNumericArray of type MWClassID.DOUBLE. The call to myprimes passes the
number of outputs, 1, and the MWNumericArray, x:

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

Java Builder converts the MWNumericArray object to a MATLAB scalar double
to pass to the M-function.

Automatic Conversion to a MATLAB Type
When passing an argument only a small number of times, it is usually just
as efficient to pass a primitive Java type or object. In this case, the calling
mechanism converts the data for you into an equivalent MATLAB type.

For instance, either of the following Java types would be automatically
converted to the MATLAB double type:

• A Java double primitive

• An object of class java.lang.Double

For reference information about data conversion (tables showing each Java
type along with its converted MATLAB type, and each MATLAB type with its
converted Java type), see “Data Conversion Rules” on page 7-7.

Code Fragment: Automatic Data Conversion
When calling the makesqr method used in the getmagic application, you could
construct an object of type MWNumericArray. Doing so would be an example
of manual conversion. Instead, you could rely on automatic conversion, as
shown in the following code fragment:

3-9

3 Programming

result = M.makesqr(1, arg[0]);

In this case, a Java double is passed as arg[0].

Here is another example:

result = theFourier.plotfft(3, data, new Double(interval));

In this Java statement, the third argument is of type java.lang.Double.
According to conversion rules, the java.lang.Double automatically converts
to a MATLAB 1-by-1 double array.

Code Fragment: Passing a Java Double Object
The example calls the myprimes method with two arguments. The first
specifies the number of arguments to return. The second is an object of class
java.lang.Double that passes the one data input to myprimes.

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));

This second argument is converted to a MATLAB 1-by-1 double array,
as required by the M-function. This is the default conversion rule for
java.lang.Double.

Code Fragment: Passing an MWArray
This example constructs an MWNumericArray of type MWClassID.DOUBLE. The
call to myprimes passes the number of outputs, 1, and the MWNumericArray, x.

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

Java Builder converts the MWNumericArray object to a MATLAB scalar double
to pass to the M-function.

3-10

Passing Arguments to and from Java

Code Fragment: Calling MWArray Methods
The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

For example, the following code fragment calls the constructor for the
MWNumericArray class with a Java double as the input argument:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

Java Builder converts the input argument to an instance of MWNumericArray,
with a ClassID property of MWClassID.DOUBLE. This MWNumericArray object
is the equivalent of a MATLAB 1-by-1 double array.

When you run this example, the results are as follows:

Array A is of type double

Changing the Default by Specifying the Type
When calling an MWArray class method constructor, supplying a specific data
type causes Java Builder to convert to that type instead of the default.

For example, in the following code fragment, the code specifies that A should
be constructed as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

Array A is of type int16

Specifying Optional Arguments
So far, the examples have not used M-functions that have varargin or
varargout arguments. Consider the following M-function:

function y = mysum(varargin)

3-11

3 Programming

% MYSUM Returns the sum of the inputs.
% Y = MYSUM(VARARGIN) Returns the sum of the inputs.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2007 The MathWorks, Inc.

y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a
varargin argument, which means that the caller can specify any number of
inputs to the function. The result is returned as a scalar double.

Code Fragment: Passing Variable Numbers of Inputs
Java Builder generates a Java interface to this function as follows:

/* mlx interface - List version*/
public void mysum(List lhs, List rhs)

throws MWException
{

(implementation omitted)
}
/* mlx interface - Array version*/
public void mysum(Object[] lhs, Object[] rhs)

throws MWException
{

(implementation omitted)
}

/* standard interface - no inputs */
public Object[] mysum(int nargout) throws MWException
{

(implementation omitted)
}

/* standard interface - variable inputs */
public Object[] mysum(int nargout, Object varargin)

throws MWException
{

3-12

Passing Arguments to and from Java

(implementation omitted)
}

In all cases, the varargin argument is passed as type Object. This lets
you provide any number of inputs in the form of an array of Object, that
is Object[], and the contents of this array are passed to the compiled
M-function in the order in which they appear in the array. Here is an example
of how you might use the mysum method in a Java program:

public double getsum(double[] vals) throws MWException
{

myclass cls = null;
Object[] x = {vals};
Object[] y = null;

try
{

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

In this example, an Object array of length 1 is created and initialized with
a reference to the supplied double array. This argument is passed to the
mysum method. The result is known to be a scalar double, so the code returns
this double value with the statement:

return ((MWNumericArray)y[0]).getDouble(1);

Cast the return value to MWNumericArray and invoke the getDouble(int)
method to return the first element in the array as a primitive double value.

3-13

3 Programming

Code Fragment: Passing Array Inputs. The next example performs
a more general calculation:

public double getsum(Object[] vals) throws MWException
{

myclass cls = null;
Object[] x = null;
Object[] y = null;

try
{

x = new Object[vals.length];
for (int i = 0; i < vals.length; i++)

x[i] = new MWNumericArray(vals[i], MWClassID.DOUBLE);

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}
finally
{

MWArray.disposeArray(x);
MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

This version of getsum takes an array of Object as input and converts each
value to a double array. The list of double arrays is then passed to the mysum
function, where it calculates the total sum of each input array.

Code Fragment: Passing a Variable Number of Outputs
When present, varargout arguments are handled in the same way that
varargin arguments are handled. Consider the following M-function:

function varargout = randvectors
% RANDVECTORS Returns a list of random vectors.
% VARARGOUT = RANDVECTORS Returns a list of random
% vectors such that the length of the ith vector = i.

3-14

Passing Arguments to and from Java

% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2007 The MathWorks, Inc.

for i=1:nargout
varargout{i} = rand(1, i);

end

This function returns a list of random double vectors such that the length of
the ith vector is equal to i. MATLAB Compiler generates a Java interface to
this function as follows:

/* mlx interface - List version */
public void randvectors(List lhs, List rhs) throws MWException

{
(implementation omitted)

}
/* mlx interface Array version */
public void randvectors(Object[] lhs, Object[] rhs) throws MWException
{

(implementation omitted)
}
/* Standard interface no inputs*/
public Object[] randvectors(int nargout) throws MWException
{

(implementation omitted)
}

Code Fragment: Passing Optional Arguments with the Standard
Interface. Here is one way to use the randvectors method in a Java
program:

public double[][] getrandvectors(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

3-15

3 Programming

cls = new myclass();
y = cls.randvectors(n);
double[][] ret = new double[y.length][];

for (int i = 0; i < y.length; i++)
ret[i] = (double[])((MWArray)y[i]).getData();

return ret;
}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The getrandvectors method returns a two-dimensional double array with
a triangular structure. The length of the ith row equals i. Such arrays are
commonly referred to as jagged arrays. Jagged arrays are easily supported in
Java because a Java matrix is just an array of arrays.

Handling Return Values
The previous examples used the fact that you knew the type and
dimensionality of the output argument. In the case that this information is
unknown, or can vary (as is possible in M-programming), the code that calls
the method might need to query the type and dimensionality of the output
arguments.

There are several ways to do this. Do one of the following:

• Use reflection support in the Java language to query any object for its type.

• Use several methods provided by the MWArray class to query information
about the underlying MATLAB array.

• Coercing to a specific type using the toTypeArray methods.

3-16

Passing Arguments to and from Java

Code Fragment: Using Java Reflection
This code sample calls the myprimes method, and then determines the type
using reflection. The example assumes that the output is returned as a
numeric matrix but the exact numeric type is unknown.

public void getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
Object a = ((MWArray)y[0]).toArray();

if (a instanceof double[][])
{

double[][] x = (double[][])a;

/* (do something with x...) */
}

else if (a instanceof float[][])
{

float[][] x = (float[][])a;

/* (do something with x...) */
}

else if (a instanceof int[][])
{

int[][] x = (int[][])a;

/* (do something with x...) */
}

else if (a instanceof long[][])
{

long[][] x = (long[][])a;

3-17

3 Programming

/* (do something with x...) */
}

else if (a instanceof short[][])
{

short[][] x = (short[][])a;

/* (do something with x...) */
}

else if (a instanceof byte[][])
{

byte[][] x = (byte[][])a;

/* (do something with x...) */
}

else
{

throw new MWException(
"Bad type returned from myprimes");

}
}

This example uses the toArray method (see “Methods to Copy, Convert,
and Compare MWArrays” on page 4-59) to return a Java primitive array
representing the underlying MATLAB array. The toArray method works just
like getData in the previous examples, except that the returned array has the
same dimensionality as the underlying MATLAB array.

Code Fragment: Using MWArray Query
The next example uses the MWArray classID method (see “Methods to
Return Information About an MWArray” on page 4-50) to determine the
type of the underlying MATLAB array. It also checks the dimensionality by
calling numberOfDimensions. If any unexpected information is returned, an
exception is thrown. It then checks the MWClassID and processes the array
accordingly.

3-18

Passing Arguments to and from Java

public void getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
MWClassID clsid = ((MWArray)y[0]).classID();

if (!clsid.isNumeric() ||
((MWArray)y[0]).numberOfDimensions() != 2)

{
throw new MWException("Bad type returned from myprimes");

}

if (clsid == MWClassID.DOUBLE)
{

double[][] x = (double[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.SINGLE)
{

float[][] x = (float[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT32 ||
clsid == MWClassID.UINT32)

{
int[][] x = (int[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT64 ||

3-19

3 Programming

clsid == MWClassID.UINT64)
{

long[][] x = (long[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT16 ||
clsid == MWClassID.UINT16)

{
short[][] x = (short[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT8 ||
clsid == MWClassID.UINT8)

{
byte[][] x = (byte[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

}
finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Code Fragment: Using toTypeArray Methods
The next example demonstrates how you can coerce or force data to a specified
numeric type by invoking any of the toTypeArray methods (see “Additional
MWArray Methods” on page 4-4 in Chapter 4, “Using Classes and Methods”
for more information about these methods) . These methods return an array
of Java types matching the primitive type specified in the name of the called
method. The data is coerced or forced to the primitive type specified in the

3-20

Passing Arguments to and from Java

method name. Note that when using these methods, data will be truncated
when needed to allow conformance to the specified data type.

Object results = null;
try {

// call a compiled m-function
results = myobject.myfunction(2);

// first output is known to be a numeric matrix
MWArray resultA = (MWNumericArray) results[0];
double[][] a = resultA.toDoubleArray();

// second output is known to be a 3-dimensional numeric array
MWArray resultB = (MWNumericArray) results[1];
Int[][][] b = resultB.toIntArray();

} finally {
MWArray.disposeArray(results);

}

3-21

3 Programming

Passing Java Objects by Reference

In this section...

“MATLAB Array” on page 3-22

“Wrappering and Passing Java Objects to M-Functions with
MWJavaObjectRef” on page 3-22

MATLAB Array
MWJavaObjectRef, a special subclass of MWArray, can be used to create a
MATLAB array that references Java objects. For detailed usage information
on this class, constructor, and associated methods, see the MWJavaObjectRef
page in the Javadoc or search for MWJavaObjectRef in the MATLAB Help
browser Search field.

Wrappering and Passing Java Objects to M-Functions
with MWJavaObjectRef
You can create an M-code wrapper around Java objects using
MWJavaObjectRef. Using this technique, you can pass objects by reference
to MATLAB functions, clone a Java object inside a Java Builder component,
as well as perform other MATLAB Compiler-specific object marshalling. The
examples in this section present some common use cases.

Code Fragment: Passing a Java Object Into a Java Builder
Component
To pass an object into a Java Builder component, simply do the following:

1 Use MWJavaObjectRef to wrap your object.

2 Pass your object to an M-function.

For example:

/* Create an object */

java.util.Hashtable<String,Integer> hash =

new java.util.Hashtable<String,Integer>();

hash.put("One", 1);

3-22

Passing Java Objects by Reference

hash.put("Two", 2);

System.out.println("hash: ");

System.out.println(hash.toString());

/* Create a MWJavaObjectRef to wrap this object */

origRef = new MWJavaObjectRef(hash);

/* Pass it to an M-function that lists its methods, etc */

result = theComponent.displayObj(1, origRef);

MWArray.disposeArray(origRef);

For reference, here is the source code for displayObj.m:

displayObj.m.

function className = displayObj(h)

disp('---------------------------');
disp('Entering M-function')
h
className = class(h)
whos('h')
methods(h)

disp('Leaving M-function')
disp('---------------------------');

Code Fragment: Clone an Object Inside a Builder Component
You can also use MWJavaObjectRef to clone an object inside a Java Builder
component. Continuing with the example in “Code Fragment: Passing a Java
Object Into a Java Builder Component” on page 3-22, do the following:

1 Add to the original hash.

2 Clone the object.

3 Optionally, continue to add items to each copy.

For example:

3-23

3 Programming

origRef = new MWJavaObjectRef(hash);

System.out.println("hash:");

System.out.println(hash.toString());

result = theComponent.addToHash(1, origRef);

outputRef = (MWJavaObjectRef)result[0];

/* We can typecheck that the reference contains a */

/* Hashtable but not <String,Integer>; */

/* this can cause issues if we get a Hashtable<wrong,wrong>. */

java.util.Hashtable<String, Integer> outHash =

(java.util.Hashtable<String,Integer>)(outputRef.get());

/* We've added items to the original hash, cloned it, */

/* then added items to each copy */

System.out.println("hash:");

System.out.println(hash.toString());

System.out.println("outHash:");

System.out.println(outHash.toString());

For reference, here is the source code for addToHash.m:

addToHash.m.

function h2 = addToHash(h)

%ADDTOHASH Add elements to a java.util.Hashtable<String, Integer>

% This file is used as an example for the

% MATLAB Builder for Java Language product.

% Copyright 2001-2007 The MathWorks, Inc.

% $Revision: 1.1.4.50 $ $Date: 2007/07/27 18:43:13 $

% Validate input

if ~isa(h,'java.util.Hashtable')

error('addToHash:IncorrectType', ...

'addToHash expects a java.util.Hashtable');

end

% Add an item

3-24

Passing Java Objects by Reference

h.put('From MATLAB',12);

% Clone the Hashtable and add items to both resulting objects

h2 = h.clone();

h.put('Orig',20);

h2.put('Clone',21);

Code Fragment: Passing a Date Into a Component and Getting
a Date From a Component
In addition to passing in created objects, as in “Code Fragment: Passing a
Java Object Into a Java Builder Component” on page 3-22, you can also use
MWJavaObjectRef to pass in Java utility objects such as java.util.date. To
do so, perform the following steps:

1 Get the current date and time using the Java object java.util.date.

2 Create an instance of MWJavaObjectRef in which to wrap the Java object.

3 Pass it to an M-function that performs further processing, such as
nextWeek.m.

For example:

/* Get the current date and time */

java.util.Date nowDate = new java.util.Date();

System.out.println("nowDate:");

System.out.println(nowDate.toString());

/* Create a MWJavaObjectRef to wrap this object */

origRef = new MWJavaObjectRef(nowDate);

/* Pass it to an M-function that calculates one week */

/* in the future */

result = theComponent.nextWeek(1, origRef);

outputRef = (MWJavaObjectRef)result[0];

java.util.Date nextWeekDate =

(java.util.Date)outputRef.get();

System.out.println("nextWeekDate:");

System.out.println(nextWeekDate.toString());

3-25

3 Programming

For reference, here is the source code for nextWeek.m:

nextWeek.m.

function nextWeekDate = nextWeek(nowDate)

%NEXTWEEK Given one Java Date, calculate another

% one week in the future

% This file is used as an example for the

% MATLAB Builder for Java Language product.

% Copyright 2001-2007 The MathWorks, Inc.

% $Revision: 1.1.4.50 $ $Date: 2007/07/27 18:43:13 $

% Validate input

if ~isa(nowDate,'java.util.Date')

error('nextWeekDate:IncorrectType', ...

'nextWeekDate expects a java.util.Date');

end

% Use java.util.Calendar to calculate one week later

% than the supplied

% java.util.Date

cal = java.util.Calendar.getInstance();

cal.setTime(nowDate);

cal.add(java.util.Calendar.DAY_OF_MONTH, 7);

nextWeekDate = cal.getTime();

Returning Java Objects Using unwrapJavaObjectRefs
If you want actual Java objects returned from a component (without the
MATLAB wrappering), use unwrapJavaObjectRefs.

This method recursively connects a single MWJavaObjectRef or a
multi-dimentional array of MWJavaObjectRef objects to a reference or array
of references.

The following code snippets show two examples of calling
unwrapJavaObjectRefs:

3-26

Passing Java Objects by Reference

Code Snippet: Returning a Single Reference or Reference To an Array
of Objects with unwrapJavaObjectRefs.

Hashtable<String,Integer> myHash = new Hashtable<String,Inte
myHash.put("a", new Integer(3));
myHash.put("b", new Integer(5));
MWJavaObjectRef A = new MWJavaObjectRef(new Integer(12));
System.out.println("A referenced the object: " + MWJavaObjectRef

MWJavaObjectRef B = new MWJavaObjectRef(myHash);
Object bObj = (Object)B;
System.out.println("B referenced the object: " + MWJavaObjectRef

Produces the following output:

A referenced the object: 12
B referenced the object: {b=5, a=3}

Code Snippet: Returning an Array of References with
unwrapJavaObjectRefs.

MWJavaObjectRef A = new MWJavaObjectRef(new Integer(12));
MWJavaObjectRef B = new MWJavaObjectRef(new Integer(104));
Object[] refArr = new Object[2];
refArr[0] = A;
refArr[1] = B;
Object[] objArr = MWJavaObjectRef.unwrapJavaObjectRefs(refArr);
System.out.println("refArr referenced the objects: " + objArr[0]

Produces the following output:

refArr referenced the objects: 12 and 104

An Optimization Example Using MWJavaObjectRef
For a full example of how to utilize MWJavaObjectRef to create a reference
to a Java object and pass it to a component, see the“Optimization Example”
on page 5-42.

3-27

3 Programming

Handling Errors

In this section...

“Error Overview” on page 3-28

“Handling Checked Exceptions” on page 3-28

“Handling Unchecked Exceptions” on page 3-31

Error Overview
Errors that occur during execution of an M-function or during data conversion
are signaled by a standard Java exception. This includes MATLAB run-time
errors as well as errors in your M-code.

In general, there are two types of exceptions in Java: checked exceptions
and unchecked exceptions.

Handling Checked Exceptions
Checked exceptions must be declared as thrown by a method using the Java
language throws clause. Java Builder components support one checked
exception: com.mathworks.toolbox.javabuilder.MWException. This
exception class inherits from java.lang.Exception and is thrown by every
MATLAB Compiler generated Java method to signal that an error has
occurred during the call. All normal MATLAB run-time errors, as well as
user-created errors (e.g., a calling error in your M-code) are manifested as
MWExceptions.

The Java interface to each M-function declares itself as throwing an
MWException using the throws clause. For example, the myprimes M-function
shown previously has the following interface:

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */
public void myprimes(Object[] lhs, Object[] rhs) throws MWException

3-28

Handling Errors

{
(implementation omitted)

}
/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/
public Object[] myprimes(int nargout, Object n) throws MWException

{
(implementation omitted)

}

Any method that calls myprimes must do one of two things:

• Catch and handle the MWException.

• Allow the calling program to catch it.

The following two sections provide examples of each.

Code Fragment: Handling an Exception in the Called Function
The getprimes example shown here uses the first of these methods. This
method handles the exception itself, and does not need to include a throws
clause at the start.

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by myprimes */

3-29

3 Programming

catch (MWException e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Note that in this case, it is the programmer’s responsibility to return
something reasonable from the method in case of an error.

The finally clause in the example contains code that executes after all
other processing in the try block is executed. This code executes whether or
not an exception occurs or a control flow statement like return or break
is executed. It is common practice to include any cleanup code that must
execute before leaving the function in a finally block. The documentation
examples use finally blocks in all the code samples to free native resources
that were allocated in the method.

For more information on freeing resources, see “Managing Native Resources”
on page 3-34.

Code Fragment: Handling an Exception in the Calling Function
In this next example, the method that calls myprimes declares that it throws
an MWException:

public double[] getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

3-30

Handling Errors

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

Handling Unchecked Exceptions
Several types of unchecked exceptions can also occur during the course of
execution. Unchecked exceptions are Java exceptions that do not need to be
explicitly declared with a throws clause. The MWArray API classes all throw
unchecked exceptions.

All unchecked exceptions thrown by MWArray and its subclasses are subclasses
of java.lang.RuntimeException. The following exceptions can be thrown
by MWArray:

• java.lang.RuntimeException

• java.lang.ArrayStoreException

• java.lang.NullPointerException

• java.lang.IndexOutOfBoundsException

• java.lang.NegativeArraySizeException

This list represents the most likely exceptions. Others might be added in
the future.

Code Fragment: Catching General Exceptions
You can easily rewrite the getprimes example to catch any exception that can
occur during the method call and data conversion. Just change the catch
clause to catch a general java.lang.Exception.

3-31

3 Programming

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by anyone */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Code Fragment: Catching Multiple Exception Types
This second, and more general, variant of this example differentiates between
an exception generated in a compiled method call and all other exception
types by introducing two catch clauses as follows:

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

3-32

Handling Errors

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by myprimes */
catch (MWException e)
{

System.out.println("Exception in MATLAB call: " +
e.toString());

return new double[0];
}

/* Catches all other exceptions */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The order of the catch clauses here is important. Because MWException is a
subclass of Exception, the catch clause for MWException must occur before
the catch clause for Exception. If the order is reversed, the MWException
catch clause will never execute.

3-33

3 Programming

Managing Native Resources

In this section...

“What are Native Resources?” on page 3-34

“Using Garbage Collection Provided by the JVM” on page 3-34

“Using the dispose Method” on page 3-35

“Overriding the Object.Finalize Method” on page 3-37

What are Native Resources?
When your code accesses Java classes created by MATLAB Builder for Java,
your program uses native resources, which exist outside the control of the
Java Virtual Machine (JVM).

Specifically, each MWArray data conversion class is a wrapper class that
encapsulates a MATLAB mxArray. The encapsulated MATLAB array
allocates resources from the native memory heap.

Note Because the Java wrapper is small and the mxArray is relatively large,
the JVM memory manager may not call the garbage collector before the
native memory becomes exhausted or badly fragmented. This means that
native arrays should be explicitly freed.

Using Garbage Collection Provided by the JVM
When you create a new instance of a Java class, the JVM allocates and
initializes the new object. When this object goes out of scope, or becomes
otherwise unreachable, it becomes eligible for garbage collection by the JVM.
The memory allocated by the object is eventually freed when the garbage
collector is run.

When you instantiate MWArray classes, the encapsulated MATLAB also
allocates space for native resources, but these resources are not visible to the
JVM and are not eligible for garbage collection by the JVM. These resources
are not released by the class finalizer until the JVM determines that it is
appropriate to run the garbage collector.

3-34

Managing Native Resources

The resources allocated by MWArray objects can be quite large and can quickly
exhaust your available memory. To avoid exhausting the native memory
heap, MWArray objects should be explicitly freed as soon as possible by the
application that creates them.

Using the dispose Method
The best technique for freeing resources for classes created by MATLAB
Builder for Java is to call the dispose method explicitly. Any Java object,
including an MWArray object, has a dispose method.

The MWArray classes also have a finalize method, called a finalizer, that
calls dispose. Although you can think of the MWArray finalizer as a kind of
safety net for the cases when you do not call dispose explicitly, keep in mind
that you cannot determine exactly when JVM calls the finalizer, and the JVM
might not discover memory that should be freed.

Code Fragment: Using dispose
The following example allocates an approximate 8 MB native array. To
the JVM, the size of the wrapped object is just a few bytes (the size of an
MWNumericArray instance) and thus not of significant size to trigger the
garbage collector. This example shows why it is good practice to free the
MWArray explicitly.

/* Allocate a huge array */
int[] dims = {1000, 1000};
MWNumericArray a = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);
.
. (use the array)
.

/* Dispose of native resources */
a.dispose();

/* Make it eligible for garbage collection */
a = null;

3-35

3 Programming

The statement a.dispose() frees the memory allocated by both the managed
wrapper and the native MATLAB array.

The MWArray class provides two disposal methods: dispose and
disposeArray. The disposeArray method is more general in that it disposes
of either a single MWArray or an array of arrays of type MWArray.

Code Fragment: Use try-finally to Ensure Resources Are Freed
Typically, the best way to call the dispose method is from a finally clause
in a try-finally block. This technique ensures that all native resources
are freed before exiting the method, even if an exception is thrown at some
point before the cleanup code.

Code Fragment: Using dispose in a finally Clause.

This example shows the use of dispose in a finally clause:

/* Allocate a huge array */
MWNumericArray a;
try
{

int[] dims = {1000, 1000};
a = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);
.
. (use the array)
.

}

/* Dispose of native resources */
finally
{

a.dispose();
/* Make it eligible for garbage collection */
a = null;

}

3-36

Managing Native Resources

Overriding the Object.Finalize Method
You can also override the Object.Finalize method to help clean up native
resources just before garbage collection of the managed object. Refer to your
Java language reference documentation for detailed information on how to
override this method.

3-37

3 Programming

Handling Data Conversion Between Java and MATLAB

In this section...

“Overview” on page 3-38

“Calling MWArray Methods” on page 3-38

“Creating Buffered Images From a MATLAB Array” on page 3-39

Overview
The call signature for a method that encapsulates a MATLAB function uses
one of the MATLAB data conversion classes to pass arguments and return
output. When you call any such method, all input arguments not derived
from one of the MWArray classes are converted by Java Builder to the correct
MWArray type before being passed to the MATLAB method.

For example, consider the following Java statement:

result = theFourier.plotfft(3, data, new Double(interval));

The third argument is of type java.lang.Double, which converts to a
MATLAB 1-by-1 double array.

Calling MWArray Methods
The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes. For example, the following code calls the constructor for the
MWNumericArray class with a Java double input. Java Builder converts
the Java double input to an instance of MWNumericArray having a ClassID
property of MWClassID.DOUBLE. This is the equivalent of a MATLAB 1-by-1
double array.

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

3-38

Handling Data Conversion Between Java and MATLAB

Array A is of type double

Specifying the Type
There is an exception: if you supply a specific data type in the same
constructor, Java Builder converts to that type rather than following the
default conversion rules. Here, the code specifies that A should be constructed
as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

Array A is of type int16

Creating Buffered Images From a MATLAB Array
Use the renderArrayData method to:

• Create a buffered image from data in a given MATLAB array.

• Verify the array is of three dimensions (height, width, and color component).

• Verify color component order is red, green, and blue.

Search on renderArrayData in the Javadoc for information on input
parameters, return values, exceptions thrown, and examples.

For a complete example of renderArrayData’s implementation, see “Buffered
Image Creation Example” on page 5-37.

3-39

3 Programming

Setting Java Properties

In this section...

“How to Set Java System Properties” on page 3-40

“Ensuring a Consistent GUI Appearance” on page 3-40

How to Set Java System Properties
Set Java system properties in one of two ways:

• In the Java statement. Use the syntax:java -Dpropertyname=value,
where propertyname is the name of the Java system property you want to
set and value is the value to which you want the property set.

• In the Java code. Insert the following statement in your Java code near the
top of the main function, before you initialize any Java components:

System.setProperty(key,value)

key is the name of the Java system property you want to set, and value
is the value to which you want the property set.

Ensuring a Consistent GUI Appearance
After developing your initial GUI using Java Builder, subsequent GUIs
that you develop may inherit properties of the MATLAB GUI, rather than
properties of your initial design. To preserve your original look and feel, set
the mathworks.DisableSetLookAndFeel Java system property to true.

Code Fragment: Setting DisableSetLookAndFeel
The following are examples of how to set mathworks.DisableSetLookAndFeel
using the techniques in “How to Set Java System Properties” on page 3-40:

• In the Java statement:

java -classpath X:/mypath/tomy/javabuilder.jar
-Dmathworks.DisableSetLookAndFeel=true

• In the Java code:

3-40

Setting Java Properties

Class A {

main () {

System.getProperties().set("mathworks.DisableSetLookAndFeel","true");

foo f = newFoo();

}

}

3-41

3 Programming

Blocking Execution of a Console Application that Creates
Figures

In this section...

“waitForFigures Method” on page 3-42

“Code Fragment: Using waitForFigures to Block Execution of a Console
Application” on page 3-43

waitForFigures Method
MATLAB Builder for Java adds a special waitForFigures method to each
Java class that it creates. waitForFigures takes no arguments. Your
application can call waitForFigures any time during execution.

The purpose of waitForFigures is to block execution of a calling program as
long as figures created in encapsulated M-code are displayed. Typically you
use waitForFigures when:

• There are one or more figures open that were created by a Java component
created by Java Builder.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When waitForFigures is called, execution of the calling program is blocked if
any figures created by the calling object remain open.

Note Use caution when calling the waitForFigures method. Calling this
method from an interactive program like Excel can hang the application. This
method should be called only from console-based programs.

3-42

Blocking Execution of a Console Application that Creates Figures

Code Fragment: Using waitForFigures to Block
Execution of a Console Application
The following example illustrates using waitForFigures from a Java
application. The example uses a Java component created by Java Builder; the
object encapsulates M-code that draws a simple plot.

1 Create a work directory for your source code. In this example, the directory
is D:\work\plotdemo.

2 In this directory, create the following M-file:

drawplot.m

function drawplot()
plot(1:10);

3 Use Java Builder to create a Java component with the following properties:

Package name examples

Class name Plotter

4 Create a Java program in a file named runplot.java with the following
code:

import com.mathworks.toolbox.javabuilder.*;
import examples.Plotter;

public class Main {
public static void main(String[] args) {

try {
plotter p = new Plotter();
try {

p.showPlot();
p.waitForFigures();

}
finally {
p.dispose();

}
}

3-43

3 Programming

catch (MWException e) {
e.printStackTrace();

}
}

}

5 Compile the application with the javac command. For an example, see
“Create a Deployable Java Builder Component” on page 1-7.

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to waitForFigures, comment
out the call, rebuild the application, and run it. In this case, the figure is
drawn and is immediately destroyed as the application exits.

3-44

Ensuring Multi-Platform Portability

Ensuring Multi-Platform Portability
CTF archives containing only M-files are platform independent, as are .jar
files. These files can be used out of the box on any platform providing that the
platform has either MATLAB or the MCR installed.

However, if your CTF archive contains MEX files, which are platform
dependent, do the following:

1 Compile your MEX file once on each platform where you want to run your
Java Builder application.

For example, if you are running on a Windows machine, and you want to
also run on the Linux 64-bit platform, compile my_mex.c twice (once on a
PC to get my_mex.mexw32 and then again on a Linux 64-bit machine to
get my_mex.mexa64).

2 Create the JAVA Builder component on one platform using the mcc
command, using the -a flag to include the MEX file compiled on the other
platform(s). In the example above, run mcc on Windows and include the -a
flag to include my_mex.mexa64. In this example, the mcc command would be:

mcc -W 'java:mycomp,myclass' my_m-file.m -a my_mex.mexa64

Note In this example, it is not necessary to explicitly include
my_mex.mexw32 (providing you are running on Windows). This example
assumes that my_mex.mexw32 and my_mex.mexa64 reside in the same
directory.

For example, if you are running on a Windows machine and you want to
ensure portability of the CTF file for a Java Builder component that invokes
the yprimes.c file (from matlabroot\extern\eamples\mex) on the Linux
64-bit platform, execute the following mcc command:

mcc -W 'java:mycomp,myclass' callyprime.m -a yprime.mexa64

where, callyprime.m can be a simple M function as follows:

3-45

3 Programming

function callyprime
disp(yprime(1,1:4));

Ensure the yprime.mexa64 file is in the same directory as your Windows
MEX file.

3-46

Using MCR Component Cache and MWComponentOptions

Using MCR Component Cache and MWComponentOptions

In this section...

“MWComponentOptions” on page 3-47

“Select Options” on page 3-47

“Set Options” on page 3-48

MWComponentOptions
As of R2007b, CTF data is now automatically extracted directly from the
JAR file with no separate CTF or componentnamemcr directory needed on
the target machine. This behavior is helpful when storage space on a file
system is limited.

If you don’t want to use this feature, use the MWComponentOptions class to
specify how Java Builder handles CTF data extraction and utilization.

Select Options
Choose from the following CtfSource or ExtractLocation instantiation
options to customize how Java Builder manages CTF content with
MWComponentOptions.

• CtfSource — This option specifies where the CTF file may be found for an
extracted component. It defines a binary data stream comprised of the bits
of the CTF file. The following values are objects of some type extending
MWCtfSource:

- MWCtfSource.NONE — Indicates that no CTF file is to be extracted. This
implies that the extracted CTF data is already accessible somewhere on
your file system. This is a public, static, final instance of MWCtfSource.

- MWCtfFileSource — Indicates that the CTF data resides within a
particular file location that you specify. This class takes a java.io.File
object in its constructor.

- MWCtfDirectorySource — Indicate a directory to be scanned when
instantiating the component: if a file with a .ctf suffix is found in the

3-47

3 Programming

directory you supply, the CTF archive bits are loaded from that file. This
class takes a java.io.File object in its constructor.

- MWCtfStreamSource — Allows CTF bits to be read and extracted directly
from a specified input stream. This class takes a java.io.InputStream
object in its constructor.

• ExtractLocation — This option specifies where the extracted CTF content
is to be located. Since the MCR requires all CTF content be located
somewhere on your file system, use the desired ExtractLocation option,
along with the component type information, to define a unique location. A
value for this option is an instance of the class MWCtfExtractLocation.
An instance of this class can be created by passing a java.io.File or
java.lang.String into the constructor to specify the file system location
to be used or one of these predefined, static final instances may be used:

- MWCtfExtractLocation.EXTRACT_TO_CACHE — use to indicate that
the CTF content is to be placed in the MCR component cache. This is
the default setting for releases R2007a and forward (see “How Does
MATLAB Builder for Java Use JAR Files?” on page 2-4).

- MWCtfExtractLocation.EXTRACT_TO_COMPONENT_DIR — Use when you want
to locate the JAR or .class files from which the component has been
loaded. If the location is found (e.g.: it is on the file system), then the
CTF data is extracted into the same directory. This option most closely
matches the behavior of R2007a and previous releases.

Set Options
Use the following methods to get or set the location where the CTF archive
may be found for an extracted component:

• getCtfSource()

• setCtfSource()

Use the following methods to get or set the location where the extracted CTF
content is to be located:

• getExtractLocation()

• setExtractLocation()

3-48

Using MCR Component Cache and MWComponentOptions

Example: Enabling MCR Component Cache, Utilitzing CTF
Content Already on Your System
If you want to enable the MCR Component Cache for a Java component (in
this example, using the user-built Java class MyModel) utilizing CTF content
already resident in your file system, instantiate MWComponentOptions using
the following statements:

MWComponentOptions options = new MWComponentOptions();

// set options for the component by calling setter methods
// on `options'
options.setCtfSource(MWCtfSource.NONE);

options.setExtractLocation(
new MWCtfExtractLocation(C:\readonlydir\MyModel_mcr));

// instantiate the component using the desired options
MyModel m = new MyModel(options);

3-49

3 Programming

Learning About Java Classes and Methods by Exploring
the Javadoc

The documentation generated by Sun Microsystems, Inc.’s Javadoc can be a
powerful resource when using Java Builder. The Javadoc can be browsed from
any MATLAB Help browser or The MathWorks web site by entering the name
of the class or method you want to learn more about in the search field.

Javadoc contains, among other information:

• Signatures that diagram method and class usage

• Parameters passed in, return values expected, and exceptions that can be
thrown

• Examples demonstrating typical usage of the class or method

3-50

http://www.mathworks.com/

4

Using Classes and Methods

The following topics explain how to use the data conversion classes in the
com.mathworks.toolbox.javabuilder.MWArray package.

Guidelines for Working with
MWArray Classes (p. 4-2)

How to use the MWArray API to
handle various kinds of data

Using Class Methods (p. 4-48) How to use each class in the
MWArray API

4 Using Classes and Methods

Guidelines for Working with MWArray Classes

Overview of the MWArray API
The MWArray Java API is a class hierarchy that represents the major
MATLAB array types. The root class is MWArray, which has the following
subclasses:

• MWNumericArray

• MWLogicalArray

• MWCharArray

• MWCellArray

• MWStructArray

These subclasses provide constructors and factory methods for creating new
MATLAB arrays from standard Java types and objects. You can use these
MATLAB arrays as arguments in method calls.

Note To improve performance, MWArrays are designed so that they cannot be
resized or reshaped once they are created.

Understanding the MWArray Base Class
MWArray stores a reference to a native MATLAB array and provides a set of
methods for accessing the array’s properties and data. MWArray also provides
methods for converting the MATLAB array to standard Java types from the
outputs of a Java class method call.

Accessing Elements of the Arrays
You cannot access the underlying MATLAB array’s data buffers directly.
Instead use set and get methods to retrieve or modify an element of the
array. The set and get methods support simple indexing through a single
subscript (value at offset) or you can supply an array of int representing the
indices of the requested value. In the case of structure arrays, indexing by
field name is also supported.

4-2

Guidelines for Working with MWArray Classes

Method Overrides Implemented by MWArray
To ensure integration with Java programs, MWArray provides overrides for
java.lang.Object methods and implements the required Java interfaces as
needed. The following table provides more information about the overrides.

Overrides

Method in MWArray
Base Class

Override Description

equals Overrides Object.equals to provide a logical
equality test for two MWArrays. Internally, this
method does a byte-wise comparison of the
native buffer. Therefore, two MWArray instances
are logically equal when they are of the same
MATLAB type and have identical size, shape,
and content.

hashCode Overrides Object.hashCode to allow MWArray
to function properly with hash-based collections.

toString Overrides Object.toString so that MWArray
objects will print properly. This method
formats a new java.lang.String from the
underlying MATLAB array so that calls to
System.out.println with an MWArray as an
argument will produce the same output as
displaying the array in MATLAB.

finalize Overrides Object.finalize so that the
underlying MATLAB array is destroyed when
the garbage collector reclaims the containing
MWArray object. This method has protected
access and is not user callable.

Java Interfaces Implemented by MWArray
MWArray implements the standard Java interfaces shown in the following
table.

4-3

4 Using Classes and Methods

Java Interfaces Implemented by MWArray

Interface Method in MWArray
Base Class

Description of
Method

Cloneable clone
(public method)

Produces a new
MWArray object that
contains a deep copy
of the underlying
MATLAB array.

Comparable compareTo
(public method)

Allows comparisons of
MWArrays for order.
Internally, this
method does a
byte-wise comparison
of the native buffer.
Therefore, MWArray
has a natural ordering
that is based on a
combination of the
array’s MATLAB type,
size, and shape.

Serializable writeObject
readObject
(private methods)

Provides serialization
support as required
by the Serializable
interface.

Additional MWArray Methods
MWArray also implements several base class methods that are common to all
MWArray subclasses. These methods are shown in the following table.

Method Usage

MWArray() Constructs an empty array.

classID() Returns the MATLAB type of the array.

4-4

Guidelines for Working with MWArray Classes

Method Usage

columnIndex() Returns the column index (second
dimension) of each element in the array.
Call this method to get an array of
column indices for the nonzero elements
of a sparse array.

dispose() Frees the native resources associated
with the underlying MATLAB array.

disposeArray(Object) Calls dispose on all MWArray instances
contained in the input.

get(int) Returns the elements at the specified
one-based offset.

get(int[]) Returns the elements at the specified
one-based index array.

getData() Returns a one-dimensional array
containing a copy of the data in the
underlying MATLAB array as an array of
Java types. The elements in the returned
array are arranged in column-wise order.
The different kinds of arrays are returned
as follows:

• If the underlying MATLAB array is
complex, the real part is returned.

• If the underlying array is sparse, an
array containing the nonzero elements
is returned.

• If the underlying array is a cell or
struct array, toArray is recursively
called on each element.

getDimensions() Returns an array of dimensions for the
array.

isEmpty() Tests if the array is empty.

isSparse() Tests if the array is sparse.

4-5

4 Using Classes and Methods

Method Usage

maximumNonZeros() Returns the current allocated capacity of
nonzero elements for a sparse array.

numberOfDimensions() Returns the number of dimensions in the
array.

numberOfElements() Returns the number of elements in the
array.

numberOfNonZeros() Returns the current number of nonzero
elements for a sparse array.

rowIndex() Returns the row index (first dimension)
of each element in the array. Call this
method to get an array of row indices for
the nonzero elements of a sparse array.

set(int, Object) Replaces the element at the one-based
index with the supplied value.

set(int[], Object) Replaces the element at the one-based
index array with the supplied value.

setdata(Object) Sets the elements of the underlying
MATLAB array to the given values. This
method should only be called on primitive
MWArray types (not, for example, on
MWCellArray, MWStructArray, or
MWJavaObjectRef).

4-6

Guidelines for Working with MWArray Classes

Method Usage

sharedCopy() Creates a new MWArray instance
that represents a shared copy of
the underlying MATLAB array.
A shared copy points to the same
underlying MATLAB array as the
original. Changing the data in a shared
copy also changes the original array.

toArray() Returns an array containing a copy of
the data in the underlying MATLAB
array as an array of Java types.
The returned array has the same
dimensionality as the underlying
MATLAB array. The different kinds of
arrays are returned as follows:

• If the underlying MATLAB array is
complex, the real part is returned.

• If the underlying array is sparse, a full
representation of the array is returned.

• If the underlying array is a cell or
struct array, toArray is recursively
called on each element.

• If the underlying array is empty
(including uninitialized elements of a
struct or cell array), toArray returns
an array of double[0][].

See also “Methods to Convert Array Data
to a Specific Type” on page 4-103.

Note MCOS objects, Java objects, and function handles passed from M
to Java via a Java Builder component and accessed using an MWArray are
unsupported and will cause a run-time exception.

4-7

4 Using Classes and Methods

Constructing Numeric Arrays
The MWNumericArray class provides a Java interface to a numeric MATLAB
array. An instance of this class can store a reference to a MATLAB array of
type double, single, int8, uint8, int16, int32, uint32, int64, and uint64.
MWNumericArrays can be real or complex, dense or sparse (sparse is supported
for double type only).

Overview of Constructors and Data Types
The following table lists MWNumericArray class constructors.

Constructor Usage

MWNumericArray() Empty double array

MWNumericArray (MWClassID) Empty array of type specified by
MWClassID

MWNumericArray(type,
MWClassID)

Real array of type specified by MWClassID

MWNumericArray(type) Real array with type determined from
default conversion rules

MWNumericArray(type, type,
MWClassID)

Complex array of type specified by
MWClassID

MWNumericArray(type, type) Complex array with type determined
from default conversion rules

4-8

Guidelines for Working with MWArray Classes

Supported Data Types. In the previous table, type represents supported
Java types. MWNumericArray supports the following Java primitive types:

• double

• float

• byte

• short

• int

• long

• boolean

The following object types are also supported:

• Subclasses of java.lang.Number

• Subclasses of java.lang.String

• Subclasses of java.lang.Boolean

In addition to supporting scalar values of the types listed, general
N-dimensional arrays of each type are also supported.

Constructing Different Types of Numeric Arrays

Here are some examples showing how to construct different types of numeric
arrays with the various forms of the MWNumericArray constructor.

Constructing Complex Arrays

The following four statements all construct a complex scalar int32 array
with a value of 1+2i:

MWNumericArray a1 = new MWNumericArray(1, 2);
MWNumericArray a2 = new MWNumericArray(1.0, 2.0,

MWClassID.INT32);
MWNumericArray a3 = new MWNumericArray(new Double(1.0),

4-9

4 Using Classes and Methods

New Integer(2), MWClassID.INT32);
MWNumericArray a4 = new MWNumericArray("1.0", "2.0",

MWClassID.INT32);

Constructing Matrices

The next group of statements constructs a 2-by-2 double matrix with the
following values:

[1 2
3 4]

double[][] x1 = {{1.0, 2.0}, {3.0, 4.0}};
int[][] x2 = {{1, 2}, {3, 4}};
Double[][] x3 = {{new Double(1.0), new Double(2.0)},

{new Double(3.0), new Double(4.0)}};
String[][] x4 = {{"1.0", "2.0'}, {"3.0", "4.0"}};

MWNumericArray a1 = new MWNumericArray(x1, MWClassID.DOUBLE);
MWNumericArray a2 = new MWNumericArray(x2, MWClassID.DOUBLE);
MWNumericArray a3 = new MWNumericArray(x3, MWClassID.DOUBLE);
MWNumericArray a4 = new MWNumericArray(x4, MWClassID.DOUBLE);

Constructing N-Dimensional Arrays

The MWNumericArray constructors also support multidimensional arrays of all
supported types. For example, you can construct a 2-by-3-by-2 double array
with the following two statements:

Double[][][] x1 = {
{{ 1.0, 2.0, 3.0},
{ 4.0, 5.0, 6.0}},

{{ 7.0, 8.0, 9.0},
{10.0, 11.0, 12.0}}

};

MWNumericArray a1 = new MWNumericArray(x1);

4-10

Guidelines for Working with MWArray Classes

Constructing Jagged Arrays

The previous examples constructed rectangular Java arrays and used these
arrays to initialize MATLAB arrays. Multidimensional arrays in Java are
implemented as arrays of arrays, which means that it is possible to construct
a Java array in which each row can have a different number of columns. Such
arrays are commonly referred to as jagged arrays.

MWNumericArray constructors support jagged arrays by constructing a
rectangular array and padding with zeros any missing elements. The
resulting MATLAB array will have a column count equal to the largest
column count in any row of the input array. For example, the following two
statements construct a 5-by-5 double matrix from a 5-by-5 Java double array
in which the number of columns in the ith row equals i:

double[][] pascalsTriangle = {
{1.0},

{1.0, 1.0},
{1.0, 2.0, 1.0},

{1.0, 3.0, 3.0, 1.0},
{1.0, 4.0, 6.0, 4.0, 1.0}

};

MWNumericArray a1 = new MWNumericArray(pascalsTriangle);

The resulting MATLAB array has the following structure:

[1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1]

Passing Arguments to Constructors as MWClassID. In some cases, the
constructor converts the input to the specified type passed as an MWClassID
value. When this value is omitted, the inputs are converted according to
default conversion rules.

For example, each of the following statements creates a real scalar double
array with a value of 1.0:

4-11

4 Using Classes and Methods

MWNumericArray a1 = new MWNumericArray(1.0);
MWNumericArray a2 = new MWNumericArray(1, MWClassID.DOUBLE);
MWNumericArray a3 = new MWNumericArray(new Double(1.0),

MWClassID.DOUBLE);
MWNumericArray a4 = new MWNumericArray("1.0", MWClassID.DOUBLE);

In general, it is most efficient to supply an argument that causes the desired
array to be created using the default conversion rules.

Some types require coercion to produce the correct MATLAB array. If you
supply an unsupported type to an MWNumericArray constructor, an exception
is thrown and the array is not created.

The following example constructs a real 1-by-3 double array with the values
[1 2 3]:

double[] x1 = {1.0, 2.0, 3.0};
int[] x2 = {1, 2, 3};
Double[] x3 = {new Double(1.0), new Double(2.0),

new Double(3.0)};
String[] x4 = {"1.0", "2.0", "3.0"};

MWNumericArray a1 = new MWNumericArray(x1, MWClassID.DOUBLE);
MWNumericArray a2 = new MWNumericArray(x2, MWClassID.DOUBLE);
MWNumericArray a3 = new MWNumericArray(x3, MWClassID.DOUBLE);
MWNumericArray a4 = new MWNumericArray(x4, MWClassID.DOUBLE);

Using Static Factory Methods to Construct MWNumericArrays
An alternative method for constructing numeric arrays is to use the static
factory methods of the MWNumericArray class. The following table lists such
methods.

Factory Method Usage

newInstance(int[], MWClassID,
MWComplexity)

Numeric array of specified type and
complexity. Values are initialized to
0.

4-12

Guidelines for Working with MWArray Classes

Factory Method Usage

newInstance(int[], Object,
MWClassID)

Real numeric array of specified type.
Values are initialized with supplied
arrays.

newInstance(int[], Object,
Object, MWClassID)

Complex numeric array of specified
type. Values are initialized with
supplied arrays.

newSparse(int[], int[],
Object, int, int, int,
MWClassID)

Real sparse numeric matrix of
specified type, dimensions, and
maximum nonzeros. Values are
initialized with supplied row,
column, and data arrays.

newSparse(int[], int[],
Object, int, int, MWClassID)

Real sparse numeric matrix of
specified type and dimensions.
Values are initialized with supplied
row, column, and data arrays.
Maximum nonzeros are computed
from input data.

newSparse(int[], int[],
Object, MWClassID)

Real sparse numeric matrix of
specified type. Values are initialized
with supplied row, column, and data
arrays. Maximum nonzeros and
dimensions are computed from input
data.

newSparse(int[], int[],
Object, Object, int, int,
int, MWClassID)

Complex sparse numeric matrix
of specified type, dimensions,
and maximum nonzeros. Values
are initialized with supplied row,
column, and data arrays.

newSparse(int[], int[],
Object, Object, int, int,
MWClassID)

Complex sparse numeric matrix
of specified type and dimensions.
Values are initialized with supplied
row, column, and data arrays.
Maximum nonzeros are computed
from input data.

4-13

4 Using Classes and Methods

Factory Method Usage

newSparse(int[], int[],
Object, Object, MWClassID)

Complex sparse numeric matrix of
specified type. Values are initialized
with supplied row, column, and data
arrays. Maximum nonzeros and
dimensions are computed from input
data.

newSparse(int, int, int,
MWClassID, MWComplexity)

Sparse numeric matrix with specified
type, complexity, dimensions, and
maximum nonzeros. Values are
initialized to 0.

newSparse(Object, MWClassID) Real sparse numeric matrix of
specified type. Values are initialized
from the supplied full matrix.

newSparse(Object, Object,
MWClassID)

Complex sparse numeric matrix of
specified type. Values are initialized
from the supplied full matrix.

Data Arrangement in the Array. Each of the static factory methods for
MWNumericArray returns a new MWNumericArray instance constructed from
the input information. The methods can be used to construct and initialize
an array with supplied data, or to construct an array of a specified size and
initialize all values to zero. The main difference is that (with exception of
the last two newSparse methods) data is supplied to the factory methods in
one-dimensional arrays with the data arranged in column-wise order.

The following example rewrites the previous one-dimensional array
constructor example:

double[] x1 = {1.0, 2.0, 3.0};
int[] x2 = {1, 2, 3};
Double[] x3 = {new Double(1.0),

new Double(2.0),
new Double(3.0)};

String[] x4 = {"1.0", "2.0", "3.0"};

int[] dims = {1, 3};
MWNumericArray a1 =

4-14

Guidelines for Working with MWArray Classes

MWNumericArray.newInstance(dims, x1, MWClassID.DOUBLE);
MWNumericArray a2 =

MWNumericArray.newInstance(dims, x2, MWClassID.DOUBLE);
MWNumericArray a3 =

MWNumericArray.newInstance(dims, x3, MWClassID.DOUBLE);
MWNumericArray a4 =

MWNumericArray.newInstance(dims, x4, MWClassID.DOUBLE);

Similarly, the 2-by-2 matrix example can be rewritten as follows:

double[] x1 = {1.0, 3.0, 2.0, 4.0};
int[] x2 = {1, 3, 2, 4};
Double[] x3 = {new Double(1.0),

new Double(3.0),
new Double(2.0),
new Double(4.0)};

String[] x4 = {"1.0", "3.0"", "2.0", "4.0"};

int[] dims = {2, 2};
MWNumericArray a1 =

MWNumericArray.newInstance(dims, x1, MWClassID.DOUBLE);
MWNumericArray a2 =

MWNumericArray.newInstance(dims, x2, MWClassID.DOUBLE);
MWNumericArray a3 =

MWNumericArray.newInstance(dims, x3, MWClassID.DOUBLE);
MWNumericArray a4 =

MWNumericArray.newInstance(dims, x4, MWClassID.DOUBLE);

Note the order of the data in the input buffers. The matrix elements are
entered in column-wise order, which is the internal storage order used by
MATLAB.

Constructing Sparse Arrays
An efficient way to construct sparse matrices is to use the newSparse
constructor methods. The examples shown here create a 4-by-4 sparse matrix
with the following values:

x = [2 -1 0 0
-1 2 -1 0
0 -1 2 -1

4-15

4 Using Classes and Methods

0 0 -1 2]

Calling newSparse. The call to newSparse passes three arrays: an array of
matrix data (x), an array containing the row indices of x (rowindex), and an
array of column indices of x (colindex). The number of rows (4) and columns
(4) are also passed, as well as the type (MWClassID.DOUBLE):

double[] x = { 2.0, -1.0, -1.0, 2.0, -1.0,
-1.0, 2.0, -1.0, -1.0, 2.0 };

int[] rowindex = {1, 2, 1, 2, 3, 2, 3, 4, 3, 4};
int[] colindex = {1, 1, 2, 2, 2, 3, 3, 3, 4, 4};

MWNumericArray a =
MWNumericArray.newSparse(rowindex, colindex, x, 4, 4,

MWClassID.DOUBLE);

Constructing the Array Without Setting Rows and Columns. You could
have passed just the row and column arrays and let the newSparse method
determine the number of rows and columns from the maximum values of
rowindex and colindex as follows:

MWNumericArray a = MWNumericArray.newSparse(rowindex, colindex,
x, MWClassID.DOUBLE);

Constructing the Array from a Full Matrix. You can also construct a
sparse array from a full matrix using newSparse. The next example rewrites
the previous example using a full matrix:

double[][] x = {{ 2.0, -1.0, 0.0, 0.0},
{-1.0, 2.0, -1.0, 0.0},
{ 0.0 -1.0, 2.0, -1.0},
{ 0.0, 0.0, -1.0, 2.0 }};

MWNumericArray a = MWNumericArray.newSparse(x,
MWClassID.DOUBLE);

4-16

Guidelines for Working with MWArray Classes

Note Numeric sparse matrices are supported only for type double.
Attempting to construct a sparse numeric matrix with any other type results
in an exception being thrown.

Accessing MWNumericArray Elements
The MWNumericArray class provides methods for accessing and modifying
array data in the form of get and set methods. The following table lists the
get and set methods.

Method Usage

gettype(int) Returns the real part of the element at the
one-based index. Return value is of the
type specified (e.g., getDouble returns a
double).

gettype(int[]) Returns the real part of the element at the
one-based index array. Return value is of
the type specified (e.g., getDouble returns
a double).

getImagtype(int) Returns the imaginary part of the element
at the one-based index. Return value is
of the type specified (e.g., getImagDouble
returns a double).

getImagtype(int[]) Returns the imaginary part of the element
at the one-based index array. Return value
is of the type specified (e.g., getDouble
returns a double).

set(int, type) Replaces the real part of the element at the
one-based index with the supplied value.

set(int[], type) Replaces the real part of the element at the
one-based index array with the supplied
value.

4-17

4 Using Classes and Methods

Method Usage

setImag(int, type) Replaces the imaginary part of the element
at the one-based index with the supplied
value.

setImag(int[], type) Replaces the imaginary part of the element
at the one-based index array with the
supplied value.

In these method calls, type represents one of the following supported Java
types of MWNumericArray:

• double

• float

• byte

• short

• int

• long

• Boolean

• Subclass of java.lang.Number

• Subclass of java.lang.String

• Subclass of java.lang.Boolean

The get and set methods access a single element at a specified index. An
index is passed to these accessor methods in the form of a single offset or
as an array of indices.

Note All indexing is one-based, which is the MATLAB convention, as
opposed to zero-based, which is the Java convention.

4-18

Guidelines for Working with MWArray Classes

Examples of Using set. The following examples construct the 2-by-2 matrix
of the previous example using the set method. The first example uses a
single index:

int[] dims = {2, 2};
MWNumericArray a =

MWNumericArray.newInstance(dims, MWClassID.DOUBLE,
MWComplexity.REAL);

int index = 0;
double[] values = {1.0, 3.0, 2.0, 4.0};

for (int index = 1; index <= 4; index++)
a.set(index, values[index-1]);

Here is the same example, but this time using an index array:

int[] dims = {2, 2};
MWNumericArray a =

MWNumericArray.newInstance(dims, MWClassID.DOUBLE,
MWComplexity.REAL);

int[] index = new int[2];
int k = 0;

for (index[0] = 1; index[0] <= 2; index[0]++)
{

for (index[1] = 1; index[1] <= 2; index[1]++)
a.set(index, ++k);

}

The sparse array example can likewise be rewritten using set as follows:

MWNumericArray a =
MWNumericArray.newSparse(4, 4, 10, MWClassID.DOUBLE,

MWComplexity.REAL);
int[] index = {1, 1};

for (index[0] = 1; index[0] <= 4; index[0]++)
{

for (index[1] = 1; index[1] <= 4; index[1]++)
{

if (index[1] == index[0])

4-19

4 Using Classes and Methods

a.set(index, 2.0);
else if (index[1] == index[0]+1 || index[1] == index[0]-1)

a.set(index, -1.0);
}

}

The example allocates the 4-by-4 sparse matrix with a capacity of 10 nonzero
elements. Initially, the array has no nonzero elements. The for loops set the
array’s values using an index array.

Sparse arrays allocate storage only for the nonzero elements that are
assigned. This example preallocates the array with a capacity of 10 elements
because it is known in advance that this many nonzeros are needed. If you
set additional zero elements to nonzero values, the allocated capacity is
automatically increased to accommodate the new values.

Examples of Using get. The get methods work like the set methods. The
get methods support indexing through one-based offset or index array. The
next example displays the elements of an N-dimensional array where all
indices are equal:

public void printDiagonals(MWNumericArray a)
{

int[] dims = a.getDimensions();
int n = dims[0];

for (int i = 1; i < dims.length; i++)
{

if (dims[i] < n)
n = dims[i];

}

for (int i = 1; i <= n; i++)
{

for (int j = 0; j < dims.length; j++)
dims[j] = n;

System.out.print("[");

for (int j = 0; j < dims.length; j++)
System.out.print(i + (j!=dims.length-1?",":""));

4-20

Guidelines for Working with MWArray Classes

System.out.print("] = " + a.getDouble(dims));

if (a.complexity() == MWComplexity.COMPLEX)
System.out.print(" + "+a.getImagDouble(dims)+"i");

System.out.print("\n");
}

}

The next example sums the real parts of all the elements in a numeric array
and returns the result as a double value:

public double sumElements(MWNumericArray a)
{

double sum = 0.0;
int n = a.numberOfElements();

for (int i = 1; i <= n; i++)
sum = sum + a.getDouble(i);

return sum;
}

This example multiplies a Java double[][] with an MWNumericArray and
returns the result as a Java double[][]:

public double[][] matrixMult(double[][] a, MWNumericArray b)
{

int[] dims = b.getDimensions();
double[][] result = new double[a.length][dims[1]];
int[] index = new int[2];

for (int i = 0; i < result.length; i++)
{

double[] row = a[i];
if (row.length != dims[0])

throw new IllegalArgumentException("Incompatible dims");

for (index[1] = 1; index[1] <= result[0].length; index[1]++)
{

double sum = 0.0;

4-21

4 Using Classes and Methods

for (index[0] = 1; index[0] <= dims[0]; index[0]++)
sum += row[index[0]-1]*b.getDouble(index);

result[i][index[0]] = sum;
}

}
return result;

}

Working with Logical Arrays
The MWLogicalArray class provides a Java interface to a MATLAB logical
array. MWLogicalArrays can be dense or sparse.

Constructing an MWLogicalArray
The MWLogicalArray class provides a set of constructors and factory methods
for creating logical arrays. The following table lists the supplied constructors.

Constructor Usage

MWLogicalArray() Empty logical array

MWLogicalArray(type) Logical array with values initialized with
supplied data

Here, type represents supported Java types. MWLogicalArray supports the
following Java primitive types: double, float, byte, short, int, long,
and boolean. The following object types are also supported: subclasses of
java.lang.Number, java.lang.String, and java.lang.Boolean. In addition
to supporting scalar values of the types listed, general N-dimensional arrays
of each type are also supported.

When numeric types are used, the values in the logical array are set to true
if the input value is nonzero, and false otherwise. The following examples
create a scalar logical array with its value initialized to true:

MWLogicalArray a1 = new MWLogicalArray(true);
MWLogicalArray a2 = new MWLogicalArray(1);
MWLogicalArray a3 = new MWLogicalArray("true");
MWLogicalArray a4 = new MWLogicalArray(new Boolean(true));

4-22

Guidelines for Working with MWArray Classes

These examples construct a scalar logical array initialized to false:

MWLogicalArray a1 = new MWLogicalArray(false);
MWLogicalArray a2 = new MWLogicalArray(0);
MWLogicalArray a3 = new MWLogicalArray("false");
MWLogicalArray a4 = new MWLogicalArray(new Boolean(false));

As with MWNumericArray, MWLogicalArrays can be constructed with
multidimensional Java arrays. Here are some examples:

boolean[][] x1 = {{true, false}, {false, true}};
int[][] x2 = {{1, 0}, {0, 1}};

Boolean[][] x3 = {{new Boolean(true), new Boolean(false)},
{new Boolean(false), new Boolean(true)}};

String[][] x4 = {{"true", "false"},
{"false", "true"}};

boolean[][][] x5 = {
{{ true, false, true},
{ false, true, false}},

{{ true, false, true},
{ false, true, false}}

};

MWLogicalArray a1 = new MWLogicalArray(x1);
MWLogicalArray a2 = new MWLogicalArray(x2);
MWLogicalArray a3 = new MWLogicalArray(x3);
MWLogicalArray a4 = new MWLogicalArray(x4);
MWLogicalArray a5 = new MWLogicalArray(x5);

Using Static Factory Methods to Create MWLogicalArrays
The following table lists the static factory methods of MWLogicalArray.

Factory Method Usage

newInstance(int[]) New logical array. Values are
initialized to false.

4-23

4 Using Classes and Methods

Factory Method Usage

newInstance(int[], Object) New logical array. Values are
initialized with supported data.

newSparse(int[], int[],
Object, int, int, int)

Sparse logical matrix of specified
dimensions and maximum nonzeros.
Values are initialized with supplied
row, column, and data arrays.

newSparse(int[], int[],
Object, int, int)

Sparse logical matrix of specified
dimensions. Values are initialized
with supplied row, column, and data
arrays. Maximum nonzeros are
computed from input data.

newSparse(int[], int[],
Object)

Sparse logical matrix. Values
are initialized with supplied row,
column, and data arrays. Maximum
nonzeros and dimensions are
computed from input data.

newSparse(Object) Sparse logical matrix. Values are
initialized from supplied full matrix.

These methods all return a new MWLogicalArray instance constructed from
the input information. You can use these methods to construct and initialize
an array with supplied data, or to construct an array of a specified size
and initialize all values to false. The main difference is that, exception
for the last newSparse method, data is supplied to the factory methods in
one-dimensional arrays with the data arranged in column-wise order.

The following examples rewrite the two-dimensional array constructor
examples using newInstance:

boolean[] x1 = {true, false, false, true};
int[] x2 = {1, 0, 0, 1};
Boolean[] x3 = {new Boolean(true), new Boolean(false),

new Boolean(false), new Boolean(true)};
String[] x4 = {"true", "false', "false", "true"};

int[] dims = {2, 2};

4-24

Guidelines for Working with MWArray Classes

MWLogicalArray a1 = MWLogicalArray.newInstance(dims, x1);
MWLogicalArray a2 = MWLogicalArray.newInstance(dims, x2);
MWLogicalArray a3 = MWLogicalArray.newInstance(dims, x3);
MWLogicalArray a4 = MWLogicalArray.newInstance(dims, x4);

Accessing MWLogicalArray Elements
The MWLogicalArray class provides methods for accessing and modifying
array data in the form of get and set methods. The following table lists the
get and set methods.

Method Usage

get(int) Returns the element at the one-based index as type
java.lang.Boolean (inherited from MWArray).

get(int[]) Returns the element at the one-based index array as
type java.lang.Boolean (inherited from MWArray).

getBoolean(int) Returns the element at the one-based index as type
boolean.

getBoolean(int[]) Returns the element at the one-based index array as
type boolean.

set(int, Object) Replaces the element at the one-based index with
the supplied value (inherited from MWArray).

set(int[],
Object)

Replaces the element at the one-based index array
with the supplied value (inherited from MWArray).

set(int, boolean) Replaces the element at the one-based index with
the supplied boolean value.

set(int[],
boolean)

Replaces element at the one-based index array with
the supplied boolean value.

The get methods return a java.lang.Boolean representing the value at
the specified index. The getBoolean methods do the same thing, except
they return a primitive boolean value. The set methods replace the value
at the specified index with the supplied value. These methods collectively
support the same types as the MWLogicalArray constructors: boolean,

4-25

4 Using Classes and Methods

double, float, byte, short, int, long, java.lang.Boolean, subclasses of
java.lang.Number, and java.lang.String.

Examples of Using set and get Methods. This example constructs a
random sparse logical matrix with a specified fraction of nonzero elements:

MWLogicalArray getRandomSparse(int m, int n, double fillFactor)
{

if (m < 0 || n < 0)
throw new IllegalArgumentException(

"Dimensions must be positive");

if (fillFactor < 0.0 || fillFactor > 1.0)
throw new IllegalArgumentException(

"Fill factor must be between 0.0 and 1.0");

int nsize = (int)(m*n*fillFactor);
MWLogicalArray a = newSparse(m, n, nsize);
if (nsize == 0)

return a;

while (a.numberOfNonZeros() < nsize)
{

int k = (int)(m*n*java.lang.Math.random());
a.set((k != 0 ? k : 1), true);

}
return a;

}

This example toggles all elements of a logical array from true/false to
false/true:

void toggleArray(MWLogicalArray a)
{

for (int k = 1; k <= a.numberOfElements(); k++)
a.set(k, !getBoolean(k));

}

Working with Character Arrays
The MWCharArray class provides a Java interface to a MATLAB char array.

4-26

Guidelines for Working with MWArray Classes

Constructing an MWCharArray
The MWCharArray class provides a set of constructors and factory methods for
creating logical arrays. The following table lists the supplied constructors.

Constructor Usage

MWCharArray() Empty char array

MWCharArray(type) char array with values initialized with supplied
data

Here, type represents supported Java types. MWCharArray supports the
following Java types: char, java.lang.Character, and java.lang.String.
In addition to supporting scalar values of the types listed, general
N-dimensional arrays of each type are also supported. The following examples
create scalar char arrays:

MWCharArray a1 = new MWCharArray('a');
MWCharArray a2 = new MWCharArray(new Character('a'));

Constructing Strings. You can use the MWCharArray class to create character
strings, as shown in these examples:

char[] x1 = {'A', ' ', 'S', 't', 'r', 'i', 'n', 'g'};
String x2 = "A String";
Character[] x3 = {

new Character('A'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),
new Character('g')};

MWCharArray a1 = new MWCharArray(x1);
MWCharArray a2 = new MWCharArray(x2);
MWCharArray a3 = new MWCharArray(x3);

4-27

4 Using Classes and Methods

Constructing an N-Dimensional Character Array. You can create a
multidimensional char array using a multidimensional array of either char
or java.lang.Character, or by using an array of java.lang.String, as
shown in these examples:

char[][] x1 = {{'A', ' ', 'S', 't', 'r', 'i', 'n', 'g'}
{'A', 'n', 'o', 't', 'h', 'e', 'r', ' ',
'S', 't', 'r', 'i', 'n', 'g'}};

String[] x2 = {"A String",
"Another String"};

Character[][] x3 = {
{new Character('A'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),
new Character('g')},

{new Character('A'),
new Character('n'),
new Character('o'),
new Character('t'),
new Character('h'),
new Character('e'),
new Character('r'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),
new Character('g')}

};

MWCharArray a1 = new MWCharArray(x1);
MWCharArray a2 = new MWCharArray(x2);
MWCharArray a3 = new MWCharArray(x3);

4-28

Guidelines for Working with MWArray Classes

The a1, a2, and a3 arrays constructed all contain a 2-by-14 MATLAB char
array. The column count of the array is equal to the largest string length in
the input array. Rows with fewer characters than the maximum are Null
padded. Arrays with larger numbers of dimensions are handled similarly.
This behavior parallels the way that MWNumericArray and MWLogicalArray
handle jagged arrays.

Using Static Factory Methods for Constructing MWCharArrays
The following table lists the factory methods of MWCharArray.

Factory Method Usage

newInstance(int[]) New char array. Values are initialized to Null.

newInstance(int[]
Object)

New char array. Values are initialized with
supported data.

These methods all return a new MWCharArray instance constructed from the
input information. You can use these methods to construct and initialize
an array with supplied data, or to construct an array of a specified size and
initialize all values to zero. The main difference is that data is supplied to
the factory methods in one-dimensional arrays with the data arranged in
column-wise order. The input data array must be either a one-dimensional
array of char, a one-dimensional array of java.lang.Character, or a single
java.lang.String.

Rewriting Strings Using the newInstance Method. The following
examples rewrite the character string examples using newInstance:

char[] x1 = {'A', ' ', 'S', 't', 'r', 'i', 'n', 'g'};
String x2 = "A String";
Character[] x3 =
{

new Character('A'),
new Character(' '),
new Character('S'),
new Character('t'),
new Character('r'),
new Character('i'),
new Character('n'),

4-29

4 Using Classes and Methods

new Character('g')
};

int[] dims = {1, 8};
MWCharArray a1 = MWCharArray.newInstance(dims, x1);
MWCharArray a2 = MWCharArray.newInstance(dims, x2);
MWCharArray a3 = MWCharArray.newInstance(dims, x3);

Constructing a Two-Dimensional Character Array. This example
constructs the two-dimensional char array of the previous example:

char[] x1 = ('A', 'A', ' ', 'n', 'S', 'o', 't', 't', 'r', 'h',

'i', 'e', 'n', 'r', 'g', ' ', '\0', 'S', '\0', 't',

'\0', 'r', '\0', 'i', '\0', 'n', '\0', 'g'};

int[] dims = {2, 14};

MWCharArray a1 = MWCharArray.newInstance(dims, x1);

Note that the array of characters supplied to initialize the array is arranged
in column-wise order, and the end of the shorter string is padded with Null
characters (’\0’). Higher dimensional character arrays can be constructed
using the same procedure.

Accessing MWCharArray Elements
The MWCharArray class provides methods for accessing and modifying array
data in the form of get and set methods. The following table lists the get
and set methods.

Method Usage

get(int) Returns the element at the one-based index as type
java.lang.Character (inherited from MWArray).

get(int[]) Returns the element at the one-based index array as
type java.lang.Character (inherited from MWArray).

getChar(int) Returns the element at the one-based index as type
char.

getChar(int[]) Returns the element at the one-based index array as
type char.

4-30

Guidelines for Working with MWArray Classes

Method Usage

set(int,
Object)

Replaces the element at the one-based index with the
supplied value (inherited from MWArray).

set(int[],
Object)

Replaces the element at the one-based index array
with the supplied value (inherited from MWArray).

set(int, char) Replaces the element at the one-based index with the
supplied char value.

set(int[],
char)

Replaces element at the one-based index array with
the supplied char value.

The get methods return a java.lang.Character representing the character
at the specified index. The getChar methods do the same thing, except they
return a primitive char value. The set methods replace the character at the
specified index with the supplied value. These methods collectively support
types char, java.lang.Character, and java.lang.String (use a String of
length 1 to pass a character to replace).

Replacing Character Occurrences Using MWCharArray Methods. This
example replaces every occurrence of a given character in an MWCharArray
with a specified new character:

void replaceWithChar(MWCharArray a, char ch, char newch)
{

if (a == null)
return;

for (int k = 1; k <= a.numberOfElements(); k++)
{

if (a.getChar(k) == ch)
a.setChar(k, newch);

}
}

Working with Cell Arrays
The MWCellArray class provides a Java interface to a MATLAB cell array.

4-31

4 Using Classes and Methods

Using MWCellArray Constructors
The MWCellArray class provides the following constructors:

Constructor Usage

MWCellArray() Empty cell array.

MWCellArray(int[]) New cell array with specified dimensions. All
cells are initialized to empty.

MWCellArray(gint, int) New cell matrix with specified number of rows
and columns.

Constructing a cell array is a two-step process. First, allocate the array using
one of the constructors in the previous table, then assign values to each cell
using one of the set methods.

Constructing an MWCellArray. For simple arrays, passing a Java array
directly is the most convenient approach. When you want to assign a more
complicated type to a cell (i.e., a complex array or another cell array), you
must create a temporary MWArray for the input value. You should dispose of
any temporary arrays after assigning them to a cell.

This example creates and initializes a 2-by-2 cell array:

String x11 = "A String";
double[][] x12 = {{1.0, 2.0},

{3.0, 4.0}};
int[][] x21 = {{1, 2},

{3, 4}};
boolean[][] x22 = {{true, false},

{false, true}};

int[] index = {1, 1};
a.set(index, x11);
index[1] = 2;
a.set(index, x12);
index[0] = 2;
a.set(index, x22);
index[1] = 1;
a.set(index, x21);

4-32

Guidelines for Working with MWArray Classes

Here, each cell is initialized with a Java array, and default conversion rules
are used to create the MATLAB array for each cell.

Constructing an MWCellArray Containing Complex Arrays. The next
example creates a helper function that constructs a cell array containing a list
of complex double arrays. The real and imaginary parts of each cell are passed
in the re and im arrays, respectively. The new cell array has dimensions
1-by-N, where N is the length of the input arrays, which must be the same.

MWCellArray createNumericCell(Object[] re, Object[] im)
throws MWException

{
if (re == null || im == null)

throw new MWException("Invalid input");
if (re.length != im.length)

throw new MWException(
"Input arrays must be the same length");

MWCellArray a = null;
MWNumericArray x = null;

try
{

a = new MWCellArray(1, re.length);
for (int k = 1; k <= re.length; k++)
{

x = new MWNumericArray(re[k-1], im[k-1],
MWClassID.DOUBLE);

a.set(k, x);
x.dispose();
x = null;

}
return a;

}

catch (Exception e)
{

if (a != null)
a.dispose();

4-33

4 Using Classes and Methods

if (x != null)
x.dispose();

throw new MWException(e.getMessage());
}

}

This method creates a new MWCellArray of the necessary size. Next, the
code loops over the number of elements in the supplied arrays. For each loop
iteration, a temporary MWNumericArray, x, is created for the current cell and
initialized with the contents of re[k-1] and im[k-1] (the loop variable, k, is
one-based). A shared copy of the temporary numeric array is then assigned to
the cell at k using the set method.

The native resources associated with x are freed when you call dispose. If an
exception is thrown during the construction phase, the partially constructed
cell array and the temporary numeric array are disposed of, if necessary.
The exception is then rethrown as an MWException. If everything goes well,
the MWCellArray is returned.

Accessing MWCellArray Elements
The MWCellArray class provides methods for accessing and modifying array
data in the form of get and set methods. The following table lists the get
and set methods.

Method Usage

get(int) Returns the element at the one-based index as a Java
array (inherited from MWArray).

get(int) Returns the element at the one-based index array as
a Java array (inherited from MWArray).

getCell(int) Returns the element at the one-based index as an
MWArray instance.

getCell(int[]) Returns the element at the one-based index array
as an MWArray instance.

4-34

Guidelines for Working with MWArray Classes

Method Usage

set(int, Object) Replaces the element at the one-based index with the
supplied value (inherited from MWArray).

set(int[],
Object)

Replaces the element at the one-based index array
with the supplied value (inherited from MWArray).

The set methods replace the cell at the specified index with the supplied
value. The cell value can be passed as any supported Java type or as an
MWArray instance. When the cell value is passed as a Java type, the value is
converted to a MATLAB array using default conversion rules. When the value
is passed as an MWArray, the cell is assigned a shared copy of the underlying
MATLAB array.

Using getCell. The getCell methods return an MWArray instance of the
proper subclass type representing a shared copy of the underlying cell. The
array returned by getCell should be disposed of when it is no longer needed.
This is the most efficient way of accessing a cell, because an MWArray object is
created to encapsulate a shared copy of the underlying array. This process is
significantly more efficient than converting the entire array to a Java array
each time you access the cell. The next example prints information about a
cell array to standard output:

void printCellInfo(MWCellArray a)
{

if (a == null)
return;

MWArray c = null;
int n = a.numberOfElements();
System.out.println("Number of elements: " + n);

try
{

for (int k = 1; k <= n; k++)
{

c = a.getCell(k);
System.out.println("cell: " + k + " type: " +

a.classID());
c.dispose();
c = null;

4-35

4 Using Classes and Methods

}
}

finally
{

if (c != null)
c.dispose();

}
}

This method loops through the array and prints the type of each cell. The
temporary array returned by getCell is disposed of after it is used. The
finally clause ensures that the array is disposed of before exiting, in the
case of an exception. MWCellArray also overrides the MWArray.get methods.
In this case, a Java array is returned that represents a conversion of the
underlying cell, as would be returned by toArray.

Using get. You can think of get as being implemented as follows:

Object get(int index)
{

MWArray a = null;
try
{

a = this.getCell(index);
return a.toArray();

}

finally
{

if (a != null)
a.dispose();

}
}

Using get, you can retrieve the cells from the first MWCellArray example
as Java arrays.

int[] index = {1, 1};
String x11 = (String)a.get(index);

4-36

Guidelines for Working with MWArray Classes

index[1] = 2;
double[][] x12 = (double[][])a.get(index);
index[0] = 2;
boolean[][] x22 = (boolean[][])a.get(index);
index[1] = 1;
int[][] x21 = (int[][])a.get(index);

As with set, default conversion rules are applied (same rules as apply to
toArray). In this example, the default rules are fine. In the case where
complex arrays, other cell arrays, or struct arrays are stored in the cell array,
it is recommended to use getCell to return an MWArray instance.

toArray and getData Methods
In addition to get and getCell, the toArray and getData methods are
implemented on MWCellArray to return a conversion of the entire cell array.
These methods provide a bulk conversion to an array of Java arrays, although
the output can be difficult to dissect in some cases (particularly in the case
of nested cell arrays).

The getData method returns a one-dimensional array of type Object. Each
element of the return cell array is converted by calling toArray on the
corresponding cell.

The toArray method returns the same array, except that it has the same
dimensionality as the underlying cell array.

Working with Struct Arrays
The MWStructArray class manages a native MATLAB struct array.

The following code excerpts show how to perform various data manipulations
with the MWStructArray class. for a complete end-to-end example of an
application that utilizes many of the methods presented in this section, see
the “Phonebook Example” on page 5-28.

Constructing an MWStructArray
The following demonstrates how to set up constructors for the MWStructArray
class. The dispose method calls are optional.

4-37

4 Using Classes and Methods

try

{

int rows = 2;

int cols = 3;

int[] dims = {rows, cols};

String[] fieldNames = {"name", "phone"};

MWStructArray a1 = new MWStructArray();

MWStructArray a2 = new MWStructArray(dims, fieldNames);

MWStructArray a3 = new MWStructArray(rows, cols, fieldNames);

a1.dispose();

a2.dispose();

a3.dispose();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

// a1.dispose();

// a2.dispose();

// a3.dispose();

}

Getting Information About a Structure
Use the following code snippet as a model for how to extract information about
an existing structure. The dispose method calls are optional.

try

{

int rows = 2;

int cols = 3;

String[] fieldNames = {"name", "phone"};

MWStructArray arr = new MWStructArray(rows, cols, fieldNames);

4-38

Guidelines for Working with MWArray Classes

System.out.println("Number of Elements: " + arr.numberOfElements());

System.out.println("Number of Fields: " + arr.numberOfFields());

java.lang.String[] fieldNames2 = arr.fieldNames();

System.out.print("Field names: ");

for (int j = 0; j < fieldNames2.length; j++)

{

System.out.print(fieldNames2[j] + " ");

}

System.out.println("");

arr.dispose();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

// arr.dispose();

}

From this code, the following output is produced:

Number of Elements: 6
Number of Fields: 2
Field names: name phone

Modifying Elements in an MWStructArray
Use the following code snippet as an example of how to modify elements in
an MWStructArray:

try

{

/* Java Hashtable containing some name-number pairs: */

Map friendsList = new TreeMap();

4-39

4 Using Classes and Methods

friendsList.put("Jordan Robert", new Integer(3386));

friendsList.put("Mary Smith", new Integer(3912));

friendsList.put("Stacy Flora", new Integer(3238));

friendsList.put("Harry Alpert", new Integer(3077));

/* Create an MWStructArray to hold the same data */

int numberOfFriends = friendsList.size();

int numberOfColumns = 1;

String[] fieldNames = {"name", "phone"};

MWStructArray friends = new MWStructArray(numberOfFriends,

numberOfColumns,

fieldNames);

/* Populate MWStructArray with data from a Java set */

Set names = friendsList.keySet();

Iterator itr = names.iterator();

Integer index = 0;

while (itr.hasNext()) {

String key = (String)itr.next();

index++;

friends.set("name", index, new MWCharArray(key));

friends.set("phone", index, (Integer)friendsList.get(key));

}

System.out.println("- MWStructArray: friends -");

dispStruct(friends);

/* Populate another MWStructArray with data from a Java array */

MWStructArray friends2 = new MWStructArray(numberOfFriends,

numberOfColumns,

fieldNames);

/* Populate MWStructArray with data from a Java set */

//String[] namesArr = (String[])(names.toArray());

String[] namesArr = names.toArray(new String[0]);

/* Java uses 0-based indices, but MWStructArrays are 1-based */

for (int j = 0; j < namesArr.length; j++)

{

4-40

Guidelines for Working with MWArray Classes

friends2.set("name", j+1, new MWCharArray(namesArr[j]));

friends2.set("phone", j+1, (Integer)friendsList.get(namesArr[j]));

}

System.out.println("- MWStructArray: friends2 -");

dispStruct(friends2);

friends.dispose();

friends2.dispose();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

// friends.dispose();

}

This code produces the following output:

- MWStructArray: friends -
Number of Elements: 4
Number of Fields: 2
Standard MATLAB view:
4x1 struct array with fields:

name
phone

Walking structure:
Element 1

name: Harry Alpert
phone: 3077

Element 2
name: Jordan Robert
phone: 3386

Element 3
name: Mary Smith
phone: 3912

4-41

4 Using Classes and Methods

Element 4
name: Stacy Flora
phone: 3238

- MWStructArray: friends2 -
Number of Elements: 4
Number of Fields: 2
Standard MATLAB view:
4x1 struct array with fields:

name
phone

Walking structure:
Element 1

name: Harry Alpert
phone: 3077

Element 2
name: Jordan Robert
phone: 3386

Element 3
name: Mary Smith
phone: 3912

Element 4
name: Stacy Flora
phone: 3238

Copying Elements from an MWStructArray
Use either of the following methods to copy elements from a struct array:

sharedCopy. The following code demonstrates how to do a copy by reference
(a shared copy) of an element in a struct array. The dispose method calls
are optional.

try

{

String[] fieldnames = {"f"};

MWStructArray A = new MWStructArray(1,1, fieldnames);

A.set("f",1,new MWCharArray("one"));

MWStructArray S = (MWStructArray)A.sharedCopy();

System.out.println("Original struct has field data \"" + A.getField("f",1).toString() + "\"

4-42

Guidelines for Working with MWArray Classes

System.out.println("Shared copy struct has field data \"" + S.getField("f",1).toString() +

MWCharArray newVal = new MWCharArray("two");

S.set("f",1, newVal);

System.out.println("After changing shared copy:");

System.out.println("Original struct has field data \"" + A.getField("f",1).toString() + "\"

System.out.println("Shared copy struct has field data \"" + S.getField("f",1).toString() +

A.dispose();

S.dispose();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

// A.dispose();

// S.dispose();

}

This code produces the following output:

Original struct has field data "one"
Shared copy struct has field data "one"
After changing shared copy:
Original struct has field data "two"
Shared copy struct has field data "two"

clone. The following code demonstrates how to do a copy by value (deep copy)
of an element in a struct array. The dispose method calls are optional.

try

{

/* USE: clone */

System.out.println("--- USE: clone ---");

String[] fieldnames = {"f"};

MWStructArray A = new MWStructArray(1,1, fieldnames);

A.set("f",1,new MWCharArray("one"));

4-43

4 Using Classes and Methods

MWStructArray C = (MWStructArray)A.clone();

System.out.println("Original struct has field data \"" + A.getField("f",1).toString() + "\"

System.out.println("Cloned struct has field data \"" + C.getField("f",1).toString() + "\"")

MWCharArray newVal = new MWCharArray("two");

C.set("f",1, newVal);

System.out.println("After changing clone:");

System.out.println("Original struct has field data \"" + A.getField("f",1).toString() + "\"

System.out.println("Cloned struct has field data \"" + C.getField("f",1).toString() + "\"")

A.dispose();

C.dispose();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

// A.dispose();

// C.dispose();

}

This code produces the following output:

Original struct has field data "one"
Cloned struct has field data "one"
After changing clone:
Original struct has field data "one"
Cloned struct has field data "two"

Creating Nested Structures in an MWStructArray
This code snippet illustrates how to create parent and child nested structures
within an MWStructArray, how to display the structures, and how to modify
the child structure.

try

{

/* Create child structure */

4-44

Guidelines for Working with MWArray Classes

String[] childFieldNames = {"a", "b"};

MWStructArray child = new MWStructArray(1,1, childFieldNames);

child.set("a",1,new MWNumericArray(new Integer(12)));

child.set("b",1,new MWNumericArray(new Integer(14)));

/* Create parent structure */

String[] parentFieldNames = {"c", "substruct"};

MWStructArray parent = new MWStructArray(1,1, parentFieldNames);

parent.set("c",1,new MWNumericArray(new Integer(19)));

parent.set("substruct",1,child);

/* Display nested structures */

System.out.println("- Parent struct: -");

dispStruct(parent);

/* Modify the child */

MWStructArray toModify = (MWStructArray)parent.getField("substruct",1);

toModify.set("a", 1, new MWNumericArray(new Integer(25)));

/* Print */

System.out.println("- After modifying child: -");

dispStruct(parent);

parent.dispose();

child.dispose();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

// A.dispose();

// C.dispose();

}

System.out.println("--- Done. ---");

}

This code produces the following output:

4-45

4 Using Classes and Methods

- Parent struct: -
Number of Elements: 1
Number of Fields: 2
Standard MATLAB view:

c: 19
substruct: [1x1 struct]

Walking structure:
Element 1

c: 19
substruct: nested structure:

+++ Begin of "substruct" nested structure
Number of Elements: 1
Number of Fields: 2
Standard MATLAB view:

a: 12
b: 14

Walking structure:
Element 1

a: 12
b: 14

+++ End of "substruct" nested structure
- After modifying child: -
Number of Elements: 1
Number of Fields: 2
Standard MATLAB view:

c: 19
substruct: [1x1 struct]

Walking structure:
Element 1

c: 19
substruct: nested structure:

+++ Begin of "substruct" nested structure
Number of Elements: 1
Number of Fields: 2
Standard MATLAB view:

a: 25
b: 14

Walking structure:
Element 1

a: 25

4-46

Guidelines for Working with MWArray Classes

b: 14
+++ End of "substruct" nested structure
--- Done. ---

Accessing Elements in an MWStructArray
Use the following example code as a model for accessing struct array elements:

public static void dispStruct(MWStructArray arr) {

System.out.println("Number of Elements: " + arr.numberOfElements());

System.out.println("Number of Fields: " + arr.numberOfFields());

System.out.println("Standard MATLAB view:");

System.out.println(arr.toString());

System.out.println("Walking structure:");

java.lang.String[] fieldNames = arr.fieldNames();

for (int element = 1; element <= arr.numberOfElements(); element++) {

System.out.println("Element " + element);

for (int field = 0; field < arr.numberOfFields(); field++) {

MWArray fieldVal = arr.getField(fieldNames[field], element);

/* Recursively print substructures, give string display of other classes */

if (fieldVal instanceof MWStructArray)

{

System.out.println(" " + fieldNames[field] + ": nested structure:");

System.out.println("+++ Begin of \"" + fieldNames[field] + "\" nested structure");

dispStruct((MWStructArray)fieldVal);

System.out.println("+++ End of \"" + fieldNames[field] + "\" nested structure");

} else {

System.out.print(" " + fieldNames[field] + ": ");

System.out.println(fieldVal.toString());

}

4-47

4 Using Classes and Methods

Using Class Methods

Using MWArray
This section covers the following topics on MWArray:

• “Constructing an MWArray” on page 4-48

• “Methods to Create and Destroy an MWArray” on page 4-48

• “Methods to Return Information About an MWArray” on page 4-50

• “Methods to Get and Set Data in the MWArray” on page 4-54

• “Methods to Copy, Convert, and Compare MWArrays” on page 4-59

• “Methods to Use on Sparse MWArrays” on page 4-64

Constructing an MWArray
Use this constructor to create an empty two-dimensional MWArray object:

MWArray()

The type given to this object is MWClassID.UNKNOWN.

Example. Construct an empty MWArray object:

MWArray A = new MWArray();

Methods to Create and Destroy an MWArray
Use these methods to destroy an object of class MWArray or any of its child
classes.

4-48

Using Class Methods

Method Description

“dispose” on
page 4-49

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-49

Frees all native MATLAB arrays contained in the input
object.

dispose. This method destroys the native MATLAB array contained by the
array object and frees the memory occupied by the array.

The prototype for the dispose method is as follows:

public void dispose()

Input Parameters

None

Example — Constructing an MWArray Object

Construct and then destroy an MWArray object:

MWArray A = new MWArray();

A.dispose();

disposeArray. This method destroys any native MATLAB arrays contained
in the input object and frees the memory occupied by them. This is a static
method of the class and thus does not need to be invoked in reference to an
instance of the class.

The prototype for the disposeArray method is as follows:

public static void disposeArray(Object arr)

4-49

4 Using Classes and Methods

Input Parameters

arr

Object to be disposed of

If the input object represents a single MWArray instance, then that instance is
freed when you call its dispose() method.

If the input object represents an array of MWArray instances, each object in the
array is disposed of.

If the input object represents an array of Object or a multidimensional array,
the array is recursively processed to free each MWArray contained in the array.

Example — Constructing an MWNumericArray Object

Construct and then destroy an array of numeric objects:

MWArray[] MArr = new MWArray[10];
for (int i = 0; i < 10; i++)

MArr[i] = new MWNumericArray();

MWArray.disposeArray(MArr);

Methods to Return Information About an MWArray
Use these methods to return information about an object of class MWArray or
any of its child classes.

Method Description

“classID” on page 4-51 Returns the MATLAB type of the array.

“getDimensions” on page 4-51 Returns the size of each dimension of the
array.

“isEmpty” on page 4-52 Tests if the array has no elements.

4-50

Using Class Methods

Method Description

“numberOfDimensions” on page
4-53

Returns the number of dimensions of the
array.

“numberOfElements” on page
4-53

Returns the total number of elements in
the array.

The examples in the following sections use a 3-by-6 MWNumericArray object
A, as constructed by this Java code:

int[][] Adata = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8, 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(Adata, MWClassID.INT32);

classID. This method returns the MATLAB type of the MWArray object. The
return type is a field defined by the MWClassID class.

The prototype for the classID method is as follows:

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of an MWArray

Return the class ID for an MWNumericArray object created previously:

System.out.println("Class of A is " + A.classID());

When run, the example displays this output:

Class of A is int32

getDimensions. This method returns a one-dimensional int array
containing the size of each dimension of the MWArray object.

4-51

4 Using Classes and Methods

The prototype for the getDimensions method is as follows:

public int[] getDimensions()

Input Parameters

None

Example — Getting Array Dimensions of an MWArray

int[] dimA = A.getDimensions();

System.out.println("Dimensions of A are " +
dimA[0] + " x " + dimA[1]);

When run, the example displays this output:

Dimensions of A are 3 x 6

isEmpty. This method returns true if the array object contains no elements,
and false otherwise.

The prototype for the isEmpty method is as follows:

public boolean isEmpty()

Input Parameters

None

Example — Testing for an Empty MWArray

Display a message if array object A is an empty array. Otherwise, display
the contents of A:

if (A.isEmpty())
System.out.println("Matrix A is empty");

else

4-52

Using Class Methods

System.out.println("A = " + A.toString());

When run, the example displays the contents of A:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

numberOfDimensions. This method returns the number of dimensions of
the array object.

The prototype for the numberOfDimensions method is as follows:

public int numberOfDimensions()

Input Parameters

None

Example — Getting the Number of Dimensions of an MWArray

Display the number of dimensions for array object A:

System.out.println("Matrix A has " + A.numberOfDimensions() +
" dimensions");

When run, the example displays this output:

Matrix A has 2 dimensions

numberOfElements. This method returns the total number of elements in
the array object.

The prototype for the numberOfElements method is as follows:

public int numberOfElements()

Input Parameters

None

4-53

4 Using Classes and Methods

Example — Getting the Number of MWArray Elements

Display the number of elements in array object A:

System.out.println("Matrix A has " + A.numberOfElements() +
" elements");

When run, the example displays this output:

Matrix A has 18 elements

Methods to Get and Set Data in the MWArray
Use these methods to get and set values in an object of class MWArray or any of
its child classes.

Method Description

“get” on page 4-54 Returns the element at the specified one-based
offset or index array as an Object.

“getData” on page
4-56

Returns a one-dimensional array containing a copy
of the data in the underlying MATLAB array. The
array is in column-wise order.

“set” on page 4-57 Replaces the element at the specified one-based
offset, or index array, in this array with the specified
element.

“toArray” on page
4-58

Returns an array containing a copy of the data in
the underlying MATLAB array. The returned array
has the same dimensionality as the MATLAB array.

get. This method returns the element located at the specified one-based offset
or index array in the array object. The element is returned as an Object.

To get the element at a specific index, use one of the following:

public Object get(int index)
public Object get(int[] index)

4-54

Using Class Methods

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector is
an index along one dimension of the MWArray object. The valid range for any
index is 1 <= index[i] <= N[i], where N[i] is the size of the ith dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-55

4 Using Classes and Methods

Example — Getting an MWArray Value with get

int[] cdims = {1, 3};
MWArray C = new MWArray(cdims);
Integer val = new Integer(15);
int[] index2 = {1, 3};
C.set(index2, val);
Object x = C.get(index2);
if (x instanceof int[][])
{
int[][] y = (int[][])x;

System.out.println("B: Cell data C(1,3) is " + y[0][0]);
}

When run, the example displays this output:

B: Cell data C(1,3) is 15

getData. This method returns all elements of the MWArray object. Elements
are returned in a one-dimensional array, in column-wise order. Elements
are returned as type Object.

The prototype for the getData method is as follows:

public Object getData()

Input Parameters

None

The elements of the returned array are converted according to default
conversion rules. If the underlying MATLAB array is a complex numeric
type, getData returns the real part.

Example — Getting an MWArray Value with getData

Get the data from MWArray object A, casting the type from Object to int:

System.out.println("Data read from matrix A is:");

4-56

Using Class Methods

int[] x = (int[]) A.getData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + x[i]);

System.out.println();

When run, the example displays this output:

Data read from matrix A is:
1 7 13 2 8 14 3 9 15 4 10 16 5 11 17 6 12 18

set. This method replaces the element at a specified index in the MWArray
object with the input element.

To set the element at a specific index, use one of the following:

public void set(int index, Object element)
public void set(int[] index, Object element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

index

Index of the requested element in the MWArray.

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

4-57

4 Using Classes and Methods

In the case where index is of type int[], each element of the index vector is
an index along one dimension of the MWArray object. The valid range for any
index is 1 <= index[i] <= N[i], where N[i] is the size of the ith dimension.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting an MWArray Value

Modify the data in element (2, 4) of MWArray object A:

int[] index = {2, 4};
A.set(index, 555);

Object d_out = A.get(index);
System.out.println("Data read from A(2,4) is " +

d_out.toString());

When run, the example displays this output:

Data read from A(2,4) is 555

toArray. This method creates an array with the same dimensionality as the
MATLAB array.

The prototype for the toArray method is as follows:

public Object[] toArray()

The elements of the returned array are converted according to default
conversion rules. If the underlying MATLAB array is a complex numeric
type, toArray returns the real part.

4-58

Using Class Methods

Input Parameters

None

Example — Getting an MWArray with toArray

Create and display a copy of MWArray object A:

int[][] x = (int[][]) A.toArray();
int[] dimA = A.getDimensions();

System.out.println("Matrix A is:");
for (int i = 0; i < dimA[0]; i++)

{
for (int j = 0; j < dimA[1]; j++)

System.out.print(" " + x[i][j]);
System.out.println();
}

When run, the example displays this output:

Matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

Methods to Copy, Convert, and Compare MWArrays
Use these methods to copy, convert, and compare objects of class MWArray or
any of its child classes.

Method Description

“clone” on page
4-60

Creates and returns a deep copy of this array.

“compareTo” on
page 4-61

Compares this array with the specified array for order.

4-59

4 Using Classes and Methods

Method Description

“equals” on page
4-62

Indicates whether some other array is equal to this one.

“hashCode” on
page 4-62

Returns a hash code value for the array.

“sharedCopy” on
page 4-63

Creates and returns a shared copy of this array.

“toString” on page
4-64

Returns a string representation of the array.

clone. This method creates and returns a deep copy of the MWArray object.
Because clone allocates a new array, any changes made to this new array are
not reflected in the original.

The prototype for the clone method is as follows:

public Object clone()

Input Parameters

None

Exceptions

The clone method throws the following exception:

java.lang.CloneNotSupportedException

The object’s class does not implement the Cloneable interface.

Example — Cloning an MWArray Object

Create a clone of MWArray object A:

Object C = A.clone();

4-60

Using Class Methods

System.out.println("Clone of matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

compareTo. This method compares the MWArray object with the input object.
It returns a negative integer, zero, or a positive integer if the MWArray object is
less than, equal to, or greater than the specified object, respectively.

The prototype for the compareTo method is as follows:

public int compareTo(Object obj)

See the compareTo method in interface java.lang.Comparable for a full
description of the return value.

Input Parameters

obj

Array to compare this MWArray object to

Example — Comparing MWArrays with compareTo

Create a shared copy of the MWArray object and then compare it to the original
object. A return value of zero indicates that the two objects are equal:

Object S = A.sharedCopy();

if (A.compareTo(S) == 0)
System.out.println("Matrix S is equal to matrix A");

When run, the example displays this output:

4-61

4 Using Classes and Methods

Matrix S is equal to matrix A

equals. This method indicates the MWArray object is equal to the input
object. The equals method of the MWArray class overrides the equals method
of class Object.

The prototype for the equals method is as follows:

public boolean equals(Object object)

Input Parameters

object

Array to compare this MWArray object to

Example — Comparing MWArrays with equals

Create a shared copy of the MWArray object and then compare it to the original
object. A return value of true indicates that the two objects are equal:

Object S = A.sharedCopy();

if (A.equals(S))
System.out.println("Matrix S is equal to matrix A");

When run, the example displays this output:

Matrix S is equal to matrix A

hashCode. This method returns a hash code value for the MWArray object.
The hashCode method of the MWArray class overrides the hashCode method
of class Object.

The prototype for the hashCode method is as follows:

public int hashCode()

4-62

Using Class Methods

Input Parameters

None

Example — Getting an MWArray Hash Code

Obtain the hash code for MWArray object A:

System.out.println("Hash code for matrix A is " + A.hashCode());

When run, the example displays this output:

Hash code for matrix A is 456687478

sharedCopy. This method creates and returns a shared copy of the array.
The shared copy points to the underlying original MATLAB array. Any
changes made to the copy are reflected in the original.

The prototype for the sharedCopy method is as follows:

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of an MWArray

Create a shared copy of MWArray object A:

Object S = A.sharedCopy();

System.out.println("Shared copy of matrix A is:");
System.out.println(S.toString());

When run, the example displays this output:

Shared copy of matrix A is:
1 2 3 4 5 6

4-63

4 Using Classes and Methods

7 8 9 10 11 12
13 14 15 16 17 18

toString. This method returns a string representation of the array. The
toString method of the MWArray class overrides the toString method of
class Object.

The prototype for the toString method is as follows:

public java.lang.String toString()

Input Parameters

None

Example — Converting an MWArray to a String

Display the contents of MWArray object A:

System.out.println("A = " + A.toString());

When run, the example displays the contents of A:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

Methods to Use on Sparse MWArrays
Use these methods to return information on sparse arrays of type MWArray or
any of its child classes.

Method Description

“isSparse” on page
4-65

Tests whether the array is sparse.

4-64

Using Class Methods

Method Description

“columnIndex” on page
4-66

Returns an array containing the column index of
each nonzero element in the underlying MATLAB
array.

“rowIndex” on page
4-67

Returns an array containing the row index of each
nonzero element in the underlying MATLAB array.

“maximumNonZeros”
on page 4-67

Returns the allocated capacity of a sparse array.
If the underlying array is nonsparse, this method
returns the same value as numberOfElements().

“numberOfNonZeros”
on page 4-68

Returns the number of nonzero elements in
a sparse array. If the underlying array is
nonsparse, this method returns the same value as
numberOfElements().

The examples that follow use the sparse MWArray object constructed below
using the “newSparse” on page 4-77 method of MWNumericArray:

double[] Adata = { 0, 10, 0, 0, 40, 50, 60, 0, 0, 90};

int[] ri = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
int[] ci = {1, 2, 3, 4, 5, 1, 2, 3, 4, 5};

MWNumericArray A = MWNumericArray.newSparse(ri, ci,
Adata, MWClassID.DOUBLE);

System.out.println(A.toString());

Here are the contents of the sparse MWArray:

(2,1) 50
(1,2) 10
(2,2) 60
(1,5) 40
(2,5) 90

isSparse. This method returns true if the MWArray object is sparse, and
false otherwise.

4-65

4 Using Classes and Methods

The prototype for the isSparse method is as follows:

public boolean isSparse()

Input Parameters

None

Example — Testing an MWArray for Sparseness

Test the MWArray object A created previously for sparseness:

if (A.isSparse())
System.out.println("Matrix A is sparse");

When run, the example displays this output:

Matrix A is sparse

columnIndex. This method returns an array containing the column index of
each element in the underlying MATLAB array.

The prototype for the columnIndex method is as follows:

public int[] columnIndex()

Input Parameters

None

Example — Getting the Column Indices of a Sparse MWArray

Get the column indices of the elements of the sparse array:

System.out.print("Column indices are: ");
int[] colidx = A.columnIndex();
for (int i = 0; i < 5; i++)

System.out.print(colidx[i] + " ");
System.out.println();

4-66

Using Class Methods

When run, the example displays this output:

Column indices are: 1 2 2 5 5

rowIndex. This method returns an array containing the row index of each
element in the underlying MATLAB array.

The prototype for the rowIndex method is as follows:

public int[] rowIndex()

Input Parameters

None

Example — Getting the Row Indices of a Sparse MWArray

Get the row indices of the elements of the sparse array:

System.out.print("Row indices are: ");
int[] rowidx = A.rowIndex();
for (int i = 0; i < 5; i++)

System.out.print(rowidx[i] + " ");
System.out.println();

When run, the example displays this output:

Row indices are: 2 1 2 1 2

maximumNonZeros. This method returns the allocated capacity of a
sparse array. If the underlying array is nonsparse, this method returns the
same value as numberOfElements.

The prototype for the maximumNonZeros method is as follows:

public int maximumNonZeros()

4-67

4 Using Classes and Methods

Input Parameters

None

Example — Getting the Maximum Number of Nonzeros in an
MWArray

Display the maximum number of nonzeros for this array:

System.out.println("Maximum number of nonzeros for matrix A is "
+ A.maximumNonZeros());

When run, the example displays this output:

Maximum number of nonzeros for matrix A is 10

numberOfNonZeros. This method returns the number of nonzero elements
in a sparse array. If the underlying array is nonsparse, this method returns
the same value as numberOfElements.

The prototype for the numberOfNonZeros method is as follows:

public int numberOfNonZeros()

Input Parameters.

None

Example — Getting the Number of Nonzeros in an MWArray

Display the number of nonzero values in this array:

System.out.println("The number of nonzeros for matrix A is " +
A.numberOfNonZeros());

When run, the example displays this output:

The number of nonzeros for matrix A is 5

4-68

Using Class Methods

Using MWNumericArray
This section covers the following topics:

• “Constructing an MWNumericArray” on page 4-69

• “Methods to Create and Destroy an MWNumericArray” on page 4-74

• “Methods to Get and Set the Real Parts of an MWNumericArray” on page
4-86

• “Methods to Get and Set the Imaginary Parts of an MWNumericArray”
on page 4-90

• “Methods to Copy, Convert, and Compare MWNumericArrays” on page 4-98

• “Methods to Use on Sparse MWNumericArrays” on page 4-101

• “Methods to Return Special Constant Values” on page 4-101

Constructing an MWNumericArray
Use the tables in this section to construct an MWNumericArray from a
particular Java data type. See the examples at the end of this section for
more help.

• “Constructing an Empty Scalar” on page 4-69

• “Constructing a Real or Complex Numeric Scalar” on page 4-71

• “Constructing a Real or Complex Numeric Array” on page 4-72

In addition to using the MWNumericArray constructor, you can also use
“newSparse” on page 4-77 to construct an MWNumericArray. These two
methods provide better performance than the constructor.

Constructing an Empty Scalar. Use either of the following constructors to
create an empty scalar MWNumericArray:

To construct an empty scalar of type MWClassID.DOUBLE, use the following:

MWNumericArray()

To construct an empty scalar of type classid, use the following:

4-69

4 Using Classes and Methods

MWNumericArray(MWClassID classid)

4-70

Using Class Methods

Example — Constructing an Empty Numeric Array Object

Create an empty scalar of type int64:

MWNumericArray A = new MWNumericArray(MWClassID.INT64);
System.out.println("A = " + A);

When you run this example, the results are as follows:

A = []

Constructing a Real or Complex Numeric Scalar. Use this constructor
syntax to create a real scalar MWNumericArray from a primitive Java type:

MWNumericArray(javatype realValue)

Or use this syntax to create a complex scalar MWNumericArray from a
primitive Java type:

MWNumericArray(javatype realValue, javatype imagValue)

The class ID for the returned MWNumericArray is shown in the following table:

javatype
Input Class ID of MWNumericArray

double MWClassID.DOUBLE

float MWClassID.SINGLE

long MWClassID.INT64

int MWClassID.INT32

short MWClassID.INT16

byte MWClassID.INT8

Exceptions

The MWNumericArray constructor throws the following exception:

ArrayStoreException

4-71

4 Using Classes and Methods

A nonnumeric array type was specified.

Example — Constructing an Integer Array Object

Construct a scalar numeric array of type MWClassID.INT16:

double AReal = 24;

MWNumericArray A = new MWNumericArray(AReal, MWClassID.INT16);
System.out.println("Array A of type " + A.classID() + " = \n" + A);

When you run this example, the results are as follows:

Array A of type int16 =
24

Example — Constructing a Complex Array Object

Construct a numeric scalar having real and imaginary parts:

double AReal = 24;
double AImag = 5;

MWNumericArray A = new MWNumericArray(AReal, AImag);
System.out.println("Array A of type " + A.classID() + " = \n" + A);

When you run this example, the results are as follows:

Array A of type double =
24.0000 + 5.0000i

Constructing a Real or Complex Numeric Array. Use this constructor
syntax to create a real nonscalar MWNumericArray from a primitive Java type:

MWNumericArray(javatype realValue, MWClassID classid)

Or use this syntax to create a complex nonscalar MWNumericArray from a
primitive Java type:

MWNumericArray(javatype realValue, javatype imagValue,

4-72

Using Class Methods

MWClassID classid)

The type javatype can be any of the following:

• double

• float

• long

• int

• short

• byte

• boolean

• Object

Example — Constructing a Real Array of a Specific Type

Construct a 3-by-6 real array of type MWClassID.SINGLE:

double[][] AData = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8 , 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(AData, MWClassID.SINGLE);
System.out.println("Array A = \n" + A);

When run, the example displays this output:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

Example — Constructing a Complex Array of a Specific Type

Construct a 1-by-3 complex array of MWClassID.DOUBLE:

double[] AReal = {24.2, -7, 113};
double[] AImag = {5, 31, 27};

4-73

4 Using Classes and Methods

MWNumericArray A =
new MWNumericArray(AReal, AImag, MWClassID.DOUBLE);

System.out.println("Array A of type " + A.classID() + " = \n" + A);

When run, the example displays this output:

Array A of type double =
1.0e+002 *

0.2420 + 0.0500i -0.0700 + 0.3100i 1.1300 + 0.2700i

Methods to Create and Destroy an MWNumericArray
In addition to the MWNumericArray constructor, you can use the newInstance
and newSparse methods to construct a numeric array. These two methods
offer better performance than using the class constructor. To destroy the
arrays, use either dispose or disposeArray, inherited from class MWArray.

Method Description

“newInstance”
on page 4-74

Constructs an array with the specified dimensions and
complexity.

“newSparse” on
page 4-77

Constructs a real sparse numeric matrix with the
specified number of rows and columns and maximum
nonzero elements, and initializes the array with the
supplied data.

“dispose” on
page 4-82

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-82

Frees all native MATLAB arrays contained in the input
object.

newInstance. This method constructs a real or complex array, specifying the
array dimensions, type, and complexity. This is a static method of the class
and thus does not need to be invoked in reference to an instance of the class.

Note This method offers better performance than using the class constructor.

4-74

Using Class Methods

To construct an uninitialized real or complex numeric array, use the following:

newInstance(int[] dims, MWClassID classid, MWComplexity cmplx)

To construct and initialize a real numeric array, use

newInstance(int[] dims, Object rData, MWClassID classid)

To construct and initialize a complex numeric array, use

newInstance(int[] dims, Object rData, Object iData,
MWClassID classid)

Input Parameters

dims

Array of nonnegative dimension sizes

classId

MWClassID representing the MATLAB type of the array

rData

Data to initialize the real part of the array. You must format the rData array
in column-wise order.

iData

Data to initialize the imaginary part of the array. You must format the iData
array in column-wise order.

Valid types for realData and imagData are as follows:

• double[]

• float[]

• long[]

• int[]

4-75

4 Using Classes and Methods

• short[]

• byte[]

• boolean[]

• One-dimensional arrays of any subclass of java.lang.Number

• One-dimensional arrays of java.lang.Boolean

Exceptions

The newInstance method throws the following exceptions:

NegativeArraySizeException

The specified dims parameter is negative.

ArrayStoreException

The array type is nonnumeric.

Example — Constructing a Numeric Array Object with newInstance

Construct a 3-by-6 real numeric array using the newInstance method. Note
that data in the Java array must be stored in column-wise order so that it will
be in the correct order in the final MWNumericArray object.

int[] dims = {3, 6};
double[] Adata = { 1, 7, 13,

2, 8, 14,
3, 9, 15,
4, 10, 16,
5, 11, 17,
6, 12, 18};

MWNumericArray A =
MWNumericArray.newInstance(dims, Adata, MWClassID.DOUBLE);

System.out.println("A = " + A);

4-76

Using Class Methods

When run, the example displays this output:

A = 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

newSparse. This method constructs a real or complex sparse
MWNumericArray, with the specified number of rows and columns and
maximum nonzero elements, and initializes the array with the supplied data.
This is a static method of the class and thus does not need to be invoked in
reference to an instance of the class.

Constructing a Sparse Matrix with No Nonzero Elements

To construct a sparse matrix with no nonzero elements, use

newSparse(int rows, int cols, int nzmax, MWClassID classid,
MWComplexity cmplx)

Constructing a Sparse Matrix of Real Numbers

To construct a real sparse array from an existing nonsparse two-dimensional
array, use

newSparse(Object realData, MWClassID classid)

To construct and initialize a new real sparse array, use

newSparse(int[] rowindex, int[] colindex, Object realData,
MWClassID classid)

To construct and initialize a new real sparse array, specifying its dimensions.
use

newSparse(int[] rowindex, int[] colindex, Object realData,
int rows, int cols, MWClassID classid)

To construct and initialize a new real sparse array, specifying its dimensions
and maximum number of nonzeros, use

4-77

4 Using Classes and Methods

newSparse(int[] rowindex, int[] colindex, Object realData,
int rows, int cols, int nzmax, MWClassID classid)

Constructing a Sparse Matrix of Complex Numbers

To construct a complex sparse array from an existing nonsparse
two-dimensional array, use

newSparse(Object realData, Object imagData, MWClassID classid)

To construct and initialize a new complex sparse array, use

newSparse(int[] rowindex, int[] colindex, Object realData,
Object imagData, MWClassID classid)

To construct and initialize a new complex sparse array, specifying its
dimensions, use

newSparse(int[] rowindex, int[] colindex, Object realData,
Object imagData, int rows, int cols, MWClassID classid)

To construct and initialize a new complex sparse array, specifying its
dimensions and maximum number of nonzeros, use

newSparse(int[] rowindex, int[] colindex, Object realData,
Object imagData, int rows, int cols, int nzmax,
MWClassID classid)

Input Parameters

realData and imagData

Data to initialize the real and imaginary parts of the array. See information
on valid data types below.

rowIndex and colIndex

Arrays of one-based row and column indices

4-78

Using Class Methods

Row and column index arrays are used to construct the sparse array such that
the following holds true, with space allocated for nzmax nonzeros:

S(rowIndex(k), columnIndex(k)) = realData(k) + imagData(k)*i

If you assign multiple values to a single rowIndex and colIndex pair, then
the element at that index is assigned the sum of these values.

rows and cols

Number of rows and columns in the matrix

nzmax

Maximum number of nonzero elements

classID

MWClassID representing the MATLAB type of the array. The only classID
currently supported is MWClassID.DOUBLE.

Valid types for the realData and imagData parameters are as follows:

• double[]

• float[]

• long[]

• int[]

• short[]

• byte[]

• boolean[]

• One-dimensional arrays of any subclass of java.lang.Number

• One-dimensional arrays of java.lang.Boolean

• One-dimensional arrays of java.lang.String

4-79

4 Using Classes and Methods

Exceptions

The newSparse method throws the following exceptions:

NegativeArraySizeException

Row or column size is negative.

IndexOutOfBoundsException

The specified index parameter is invalid.

ArrayStoreException

Incompatible array type or invalid array data

Example — Constructing a Sparse Array Object with newSparse

Creating a sparse complex MWNumericArray:

Construct a two-dimensional complex sparse MWNumericArray from the real
and imaginary double vectors:

double[][] rData = {{ 0, 0, 0, 16, 0},
{71, 63, 32, 0, 0}};

double[][] iData = {{ 0, 0, 0, 41, 0},
{ 0, 0, 32, 0, 2}};

MWNumericArray A =
MWNumericArray.newSparse(rData, iData, MWClassID.DOUBLE);

System.out.println("A = " + A.toString());

When run, the example displays this output:

A = (2,1) 71.0000
(2,2) 63.0000
(2,3) 32.0000 +32.0000i

4-80

Using Class Methods

(1,4) 16.0000 +41.0000i
(2,5) 0 + 2.0000i

Example — Using newSparse with Row and Column Indices

Construct a sparse MWNumericArray from vector Adata:

double[] Adata = { 0, 10, 0, 0, 40, 50, 60, 0, 0, 90};

int[] ri = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2};
int[] ci = {1, 2, 3, 4, 5, 1, 2, 3, 4, 5};

MWNumericArray A = MWNumericArray.newSparse(ri, ci,
Adata, MWClassID.DOUBLE);

System.out.println("A = " + A.toString());

When run, the example displays this output:

(2,1) 50
(1,2) 10
(2,2) 60
(1,5) 40
(2,5) 90

Example — Assigning Multiple Values to a Single Array Element

Create a sparse MWNumericArray using the rowindex and colindex
arguments, specifying multiple values for the array element at index (2, 5).
The result is that this element stores the sum of the values from Adata(1),
Adata(7), Adata(8), and Adata(9), which is equal to 250.

double[] Adata = { 0, 10, 0, 0, 40, 50, 60, 70, 80, 90};

int[] ri = {1, 2, 1, 1, 1, 2, 2, 2, 2, 2};
int[] ci = {1, 5, 2, 3, 5, 1, 2, 5, 5, 5};

MWNumericArray A =
MWNumericArray.newSparse(ri, ci, Adata, 4, 5,

MWClassID.DOUBLE);

4-81

4 Using Classes and Methods

System.out.println("A = " + A.toString());

When run, the example displays this output:

(2,1) 50
(2,2) 60
(1,5) 40
(2,5) 250

dispose. MWNumericArray inherits this method from the MWArray class.

disposeArray. MWNumericArray inherits this method from the MWArray
class.

Methods to Return Information About an MWNumericArray
Use these methods to return information about an object of class
MWNumericArray.

Method Description

“classID” on page 4-83 Returns the MATLAB type of this array.

“complexity” on page 4-83 Returns the complexity of this array.

“getDimensions” on page
4-83

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-83 Tests whether the array has no elements.

“isFinite” on page 4-83 Tests for finiteness in a machine-independent
manner.

“isInf” on page 4-84 Tests for infinity in a machine-independent
manner.

“isNaN” on page 4-85 Tests for NaN (not a number) in a
machine-independent manner.

“numberOfDimensions” on
page 4-86

Returns the number of dimensions of this
array.

“numberOfElements” on
page 4-86

Returns the total number of elements in this
array.

4-82

Using Class Methods

classID. MWNumericArray inherits this method from the MWArray class.

complexity. This method returns the complexity of the MWNumericArray
object as either MWComplexity.REAL for a real array, or MWComplexity.COMPLEX
for a complex array.

The prototype for the complexity method is

public MWComplexity complexity()

Input Parameters

None

Example — Testing for a Complex Array

Determine whether matrix A is real or complex:

double AReal = 24;
double AImag = 5;

MWNumericArray A = new MWNumericArray(AReal, AImag);
System.out.println("A is a " + A.complexity() + " matrix");

When run, the example displays this output:

A is a complex matrix

getDimensions. MWNumericArray inherits this method from the MWArray
class.

isEmpty. MWNumericArray inherits this method from the MWArray class.

isFinite. This method tests for finiteness in a machine-independent manner.
This is a static method of the class and does not need to be invoked in
reference to an instance of the class.

The prototype for the isFinite method is as follows:

public static boolean isFinite(double value)

4-83

4 Using Classes and Methods

Input Parameters

value

double value to test for finiteness

Example — Testing for Finite Array Values

Test x for finiteness:

double x = 25;

if (MWNumericArray.isFinite(x))
System.out.println("The input value is finite");

When run, the example displays this output:

The input value is finite

isInf. This method tests for infinity in a machine-independent manner. This
is a static method of the class and does not need to be invoked in reference
to an instance of the class.

The prototype for the isInf method is as follows:

public static boolean isInf(double value)

Input Parameters

value

double value to test for infinity

Example — Testing for Infinite Array Values

4-84

Using Class Methods

Test x for infinity:

double x = 1.0 / 0.0;

if (MWNumericArray.isInf(x))
System.out.println("The input value is infinite");

When run, the example displays this output:

The input value is infinite

isNaN. This method tests for NaN (Not a Number) in a machine-independent
manner. This is a static method of the class and does not need to be invoked
in reference to an instance of the class.

The prototype for the isNaN method is

public static boolean isNaN(double value)

Input Parameters

value

double value to test for NaN

Example — Testing for NaN Array Values

Test x for NaN:

double x = 0.0 / 0.0;

if (MWNumericArray.isNaN(x))
System.out.println("The input value is not a number.");

When run, the example displays this output:

The input value is not a number.

4-85

4 Using Classes and Methods

numberOfDimensions. MWNumericArray inherits this method from the
MWArray class.

numberOfElements. MWNumericArray inherits this method from the
MWArray class.

Methods to Get and Set the Real Parts of an MWNumericArray
Use these methods to get and set real values in an object of class
MWNumericArray.

Method Description

“get” on page
4-87

Returns the element at the specified offset as an Object.

“getData” on
page 4-87

Returns a one-dimensional array containing a copy of the
data in the underlying MATLAB array.

“getDouble”
on page 4-87

Returns the real part at the specified offset as a double
value.

“getFloat” on
page 4-88

Returns the real part at the specified offset as a float
value.

“getLong” on
page 4-88

Returns the real part at the specified offset as a long value.

“getInt” on
page 4-88

Returns the real part at the specified offset as an int value.

“getShort” on
page 4-88

Returns the real part at the specified offset as a short
value.

“getByte” on
page 4-89

Returns the real part at the specified offset as a byte value.

“set” on page
4-90

Replaces the real part at the specified offset with the
specified value.

“toArray” on
page 4-90

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

4-86

Using Class Methods

The following syntax applies to all the above methods except getData and
toArray.

Calling Syntax. To get the element at a specific index, use one of the
following:

public type getType(int index)
public type getType(int[] index)

To set the element at a specific index, use one of the following:

public void set(int index, type element)
public void set(int[] index, type element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWNumericArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions. The MWNumericArray constructor throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

get. MWNumericArray inherits this method from the MWArray class.

getData. MWNumericArray inherits this method from the MWArray class.

getDouble. This method returns the real part of the MWNumericArray
element located at the specified one-based index or index array. The return
value is given type double.

4-87

4 Using Classes and Methods

Use either of the following prototypes for the getDouble method, where index
can be of type int or int[]:

public double getDouble(int index)
public double getDouble(int[] index)

getFloat. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value
is given type float.

Use either of the following prototypes for the getFloat method, where index
can be of type int or int[]:

public float getFloat(int index)
public float getFloat(int[] index)

getLong. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value is
given type long.

Use either of the following prototypes for the getLong method, where index
can be of type int or int[]:

public long getLong(int index)
public long getLong(int[] index)

getInt. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value is
given type int.

Use either of the following prototypes for the getInt method, where index
can be of type int or int[]:

public int getInt(int index)
public int getInt(int[] index)

getShort. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value
is given type short.

4-88

Using Class Methods

Use either of the following prototypes for the getShort method, where index
can be of type int or int[]:

public short getShort(int index)
public short getShort(int[] index)

getByte. This method returns the real part of the MWNumericArray element
located at the specified one-based index or index array. The return value is
given type byte.

Use either of the following prototypes for the getByte method, where index
can be of type int or int[]:

public byte getByte(int index)
public byte getByte(int[] index)

Example — Getting a Short Value from a Numeric Array

The following examples use this array:

short[][] Adata = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8 , 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(Adata, MWClassID.INT16);
int[] index = {2, 4};
System.out.println("A(2,4) = " + A.getShort(index));

When run, the example displays this output:

A(2,4) = 10

Example — Using get and set on a Numeric Array

Given the same MWNumericArray used in the previous example, get and then
modify the value of element (2, 3):

int[] idx = {2, 3};

System.out.println("A(2, 3) is " + A.get(idx).toString());
System.out.println("");

4-89

4 Using Classes and Methods

System.out.println("Setting A(2, 3) to a new value ...");
A.set(idx, 555);
System.out.println("");

System.out.println("A(2, 3) is now " + A.get(idx).toString());

When run, the example displays this output:

A(2, 3) is 9.0

Setting A(2, 3) to a new value ...

A(2, 3) is now 555.0

set. MWNumericArray inherits the following methods from the MWArray class.

set(int index, type element)
set(int[] index, type element)

MWNumericArray also overloads set for primitive byte, short, int, long,
float, and double types.

toArray. MWNumericArray inherits this method from the MWArray class.

Methods to Get and Set the Imaginary Parts of an
MWNumericArray
Use these methods to get and set imaginary values in an object of class
MWNumericArray.

Method Description

“getImag” on page
4-92

Returns the imaginary part at the specified index
array in this array.

“getImagData” on
page 4-93

Returns a one-dimensional array containing a copy
of the imaginary data in the underlying MATLAB
array.

“getImagDouble” on
page 4-94

Returns the imaginary part at the specified offset
as a double value.

4-90

Using Class Methods

Method Description

“getImagFloat” on
page 4-95

Returns the imaginary part at the specified offset as
a float value.

“getImagLong” on
page 4-95

Returns the imaginary part at the specified offset
as a long value.

“getImagInt” on page
4-95

Returns the imaginary part at the specified offset as
an int value.

“getImagShort” on
page 4-95

Returns the imaginary part at the specified offset as
a short value.

“getImagByte” on
page 4-96

Returns the imaginary part at the specified offset
as a byte value.

“setImag” on page
4-96

Replaces the imaginary part at the specified index
array in this array with the specified double value.

“toImagArray” on
page 4-97

Returns an array containing a copy of the imaginary
data in the underlying MATLAB array. The
returned array has the same dimensionality as the
MATLAB array.

The following syntax applies to all the above methods except getImagData.

Calling Syntax. To get the element at a specific index, use one of the
following:

public type getImagType(int index)
public type getImagType(int[] index)

To set the element at a specific index, use one of the following:

public void setImag(int index, type element)
public void setImag(int[] index, type element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

4-91

4 Using Classes and Methods

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWNumericArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions. These methods throw the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

getImag. This method returns the imaginary part of the MWNumericArray
element located at the specified one-based index or index array. The type of
the return value is Object.

Use either of the following prototypes for the getImag method, where index
can be of type int or int[]:

public Object getImag(int index)
public Object getImag(int[] index)

Example — Getting the Real and Imaginary Parts of an Array

Start by creating a two-dimensional array of complex values:

double[][] Rdata = {{ 2, 3, 4},
{ 8 , 9, 10},
{14, 15, 16}};

double[][] Idata = {{ 6, 5, 14},
{ 7 , 1, 23},
{ 1, 1, 9}};

MWNumericArray A = new MWNumericArray(Rdata, Idata,
MWClassID.DOUBLE);

System.out.println("Complex matrix A =");

4-92

Using Class Methods

System.out.println(A.toString());

Here is the complex array that is displayed:

2.0000 + 6.0000i 3.0000 + 5.0000i 4.0000 + 14.0000i
8.0000 + 7.0000i 9.0000 + 1.0000i 10.0000 + 23.0000i

14.0000 + 1.0000i 15.0000 + 1.0000i 16.0000 + 9.0000i

Now, use get and getImag to read the real and imaginary parts of the element
at index (2, 3):

int[] index = {2, 3};
System.out.println("The real part of A(2,3) = " +

A.get(index));
System.out.println("The imaginary part of A(2,3) = " +

A.getImag(index));

When run, the example displays this output:

The real part of A(2,3) = 10.0
The imaginary part of A(2,3) = 23.0

getImagData. This method returns a one-dimensional MWNumericArray
containing a copy of the imaginary data in the underlying MATLAB array.

The prototype for the getImagData method is as follows:

public Object getImagData()

getImagData returns the array of elements in column-wise order. The
elements are converted according to default conversion rules.

Example — Getting Data from a Complex Array

Using the same array as in the example for “getImag” on page 4-92, get the
entire contents of the complex array:

int[] index = {2, 3};
double[] x;

4-93

4 Using Classes and Methods

System.out.println("The real data in matrix A is:");
x = (double[]) A.getData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + x[i]);
System.out.println();

System.out.println();

System.out.println("The imaginary data in matrix A is:");
x = (double[]) A.getImagData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + x[i]);
System.out.println();

When run, the example displays this output:

The real data in matrix A is:
2.0 8.0 14.0 3.0 9.0 15.0 4.0 10.0 16.0

The imaginary data in matrix A is:
6.0 7.0 1.0 5.0 1.0 1.0 14.0 23.0 9.0

getImagDouble. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type double.

Use either of the following prototypes for the getImagDouble method, where
index can be of type int or int[]:

public double getImagDouble(int index)
public double getImagDouble(int[] index)

Example — Getting Complex Data of a Specific Type

Using the same array as in the example for “getImag” on page 4-92, get the
real and imaginary parts of one element of the MWNumericArray:

int[] index = {2, 3};
System.out.println("The real part of A(2,3) = " +

A.getDouble(index));

4-94

Using Class Methods

System.out.println("The imaginary part of A(2,3) = " +
A.getImagDouble(index));

When run, the example displays this output:

The real part of A(2,3) = 10.0
The imaginary part of A(2,3) = 23.0

getImagFloat. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type float.

Use either of the following prototypes for the getImagFloat method, where
index can be of type int or int[]:

public float getImagFloat(int index)
public float getImagFloat(int[] index)

getImagLong. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type long.

Use either of the following prototypes for the getImagLong method, where
index can be of type int or int[]:

public long getImagLong(int index)
public long getImagLong(int[] index)

getImagInt. This method returns the imaginary part of the MWNumericArray
element located at the specified one-based index or index array. The return
value is given type int.

Use either of the following prototypes for the getImagInt method, where
index can be of type int or int[]:

public int getImagInt(int index)
public int getImagInt(int[] index)

getImagShort. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type short.

4-95

4 Using Classes and Methods

Use either of the following prototypes for the getImagShort method, where
index can be of type int or int[]:

public short getImagShort(int index)
public short getImagShort(int[] index)

getImagByte. This method returns the imaginary part of the
MWNumericArray element located at the specified one-based index or index
array. The return value is given type byte.

Use either of the following prototypes for the getImagByte method, where
index can be of type int or int[]:

public byte getImagByte(int index)
public byte getImagByte(int[] index)

setImag. This method replaces the imaginary part at the specified one-based
index array in this array with the specified byte value.

Use either of the following prototypes for the setImag method, where index
can be of type int or int[]:

public void setImag(int index, javatype element)
public void setImag(int[] index, javatype element)

The type javatype can be any of the following:

• double

• float

• long

• int

• short

• byte

• Object

4-96

Using Class Methods

Exceptions

These methods throw the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

toImagArray. This method returns an array containing a copy of the
imaginary data in the underlying MATLAB array.

The prototype for the toImagArray method is

public Object toImagArray()

The array that is returned has the same dimensionality as the MATLAB array.
The elements of this array are converted according to default conversion rules.

Input Parameters

None

Example — Getting Complex Data with toImagArray

Using the same array as in the example for “getImag” on page 4-92, get and
display a copy of the imaginary part of that array:

double[][] x = (double[][]) A.toImagArray();
int[] dimA = A.getDimensions();

System.out.println("The imaginary part of matrix A is:");
for (int i = 0; i < dimA[0]; i++)

{
for (int j = 0; j < dimA[1]; j++)

System.out.print(" " + x[i][j]);
System.out.println();
}

4-97

4 Using Classes and Methods

When run, the example displays this output:

The imaginary part of matrix A is:
6.0 5.0 14.0
7.0 1.0 23.0
1.0 1.0 9.0

Methods to Copy, Convert, and Compare MWNumericArrays
Use these methods to copy, convert, and compare objects of class
MWNumericArray.

Method Description

“clone” on
page 4-98

Creates and returns a deep copy of this array.

“compareTo”
on page 4-99

Compares this array with the specified array for order.

“equals” on
page 4-100

Indicates whether some other array is equal to this one.

“hashcode” on
page 4-100

Returns a hash code value for the array.

“sharedCopy”
on page 4-100

Creates and returns a shared copy of this array.

“toString” on
page 4-100

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWNumericArray overrides the clone method of class
MWArray.

The prototype for the clone method is

public Object clone()

4-98

Using Class Methods

Input Parameters

None

Exceptions

The clone method throws the following exception:

java.lang.CloneNotSupportedException

The object’s class does not implement the Cloneable interface.

Example — Cloning a Numeric Array Object

Create a 3-by-6 array of type double:

double[][] AData = {{ 1, 2, 3, 4, 5, 6},
{ 7, 8 , 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}};

MWNumericArray A = new MWNumericArray(AData, MWClassID.DOUBLE);

Create a clone of the MWNumericArray object A:

Object C = A.clone();

System.out.println("Clone of matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

compareTo. MWNumericArray inherits this method from the MWArray class.

4-99

4 Using Classes and Methods

equals. MWNumericArray inherits this method from the MWArray class.

hashcode. MWNumericArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWNumericArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWNumericArray overrides the sharedCopy
method of class MWArray.

The prototype for the sharedCopy method is as follows:

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of a Numeric Array Object

Create a shared copy of MWArray object A:

Object S = A.sharedCopy();

System.out.println("Shared copy of matrix A is:");
System.out.println(S.toString());

When run, the example displays this output:

Shared copy of matrix A is:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

toString. MWNumericArray inherits this method from the MWArray class.

4-100

Using Class Methods

Methods to Use on Sparse MWNumericArrays
Use these methods to return information on sparse arrays of type
MWNumericArray. All are inherited from class MWArray.

Operations on sparse arrays of type MWNumericArray are currently supported
only for the double type.

Method Description

“newSparse” on page 4-77 Constructs a real sparse numeric matrix with
the specified number of rows and columns and
maximum nonzero elements, and initializes the
array with the supplied data.

“isSparse” on page 4-65 Tests whether the array is sparse.

“columnIndex” on page
4-66

Returns an array containing the column index
of each nonzero element in the underlying
MATLAB array.

“rowIndex” on page 4-67 Returns an array containing the row index
of each nonzero element in the underlying
MATLAB array.

“maximumNonZeros” on
page 4-67

Returns the allocated capacity of a sparse
array. If the underlying array is nonsparse,
this method returns the same value as
numberOfElements().

“numberOfNonZeros” on
page 4-68

Returns the number of nonzero elements in
a sparse array. If the underlying array is
nonsparse, this method returns the same value
as numberOfElements().

MWNumericArray inherits all the above methods from the MWArray class.

Methods to Return Special Constant Values
Use these methods to return the values symbolized by EPS, Inf, and NaN
in MATLAB.

4-101

4 Using Classes and Methods

Method Description

“getEps” on
page 4-102

Get the value represented by EPS (floating-point relative
accuracy) in MATLAB.

“getInf” on page
4-102

Get the value represented by INF (infinity) in MATLAB.

“getNaN” on
page 4-103

Get the value represented by NaN (Not a Number) in
MATLAB.

getEps. This method returns the MATLAB concept of EPS, which stands for
the floating-point relative accuracy.

The prototype for the getEps method is

public static double getEps()

Input Parameters

None

Exceptions

None

getInf. This method returns the MATLAB concept of Inf, which stands for
infinity.

The prototype for the getInf method is

public static double getInf()

Input Parameters

None

4-102

Using Class Methods

Exceptions

None

getNaN. This method returns the MATLAB concept of NaN, which stands
for "Not a Number".

The prototype for the getNaN method is

public static double getNaN()

Input Parameters

None

Exceptions

None

Methods to Convert Array Data to a Specific Type
Use these methods to return copies of MATLAB arrays of a specified primitive
data type, such as float or int.

4-103

4 Using Classes and Methods

Method Description

toByteArray

toDoubleArray

toFloatArray

toIntArray

toLongArray

toShortArray

toImagArray

toImagByteArray

toImagDoubleArray

toImagFloatArray

toImagIntArray

toImagLongArray

toImagShortArray

These methods return an array of Java types
matching the primitive type in the name of
the method. The returned array is of the same
dimension as the underlying MATLAB array.

For example, if you call toShortArray, an array of
type short is returned regardless of the data type
in the underlying array. The data is converted
from another primitive type, if necessary, and the
array’s original dimensions are preserved upon
return.

If conversion is performed, truncation or other
loss of precision may occur. For example,
if you call toFloatArray on an instance of
MWArray containing data of the type double,
the floating–point values are truncated from
double–precision (double) to single–precision
(float) numbers.

These methods can also be useful in determining
the types in an array when the dimensionality of
a real or complex MWArray is known but the type
is not.

For more information on a specific method, enter
the method name in the MATLAB Help browser
to browse the Javadoc.

For examples, see “Code Fragment: Using
toTypeArray Methods” on page 3-20.

4-104

Using Class Methods

Method Description

getByteData

getDoubleData

getFloatData

getIntData

getLongData

getShortData

getImagData

getImagByteData

getImagDoubleData

getImagFloatData

getImagIntData

getImagLongData

getImagShortData

These methods return a one– dimensional array
of Java types matching the primitive type in the
name of the method.

For example, if you call getShortData, an array of
type short is returned regardless of the data type
in the underlying array. The data is converted
from another primitive type, if necessary.

If conversion is performed, truncation or
other loss of precision may occur. For
example, if you call getShortData on
an instance of MWArray containing data
of the type double, the floating–point
values are truncated from double–precision
(double) to single–precision (float) numbers.

These methods can be helpful when you require
your data in a one–dimensional format for
performance reasons, for example.

For more information on a specific method, enter
the method name in the MATLAB Help browser
Search field to browse the Javadoc.

Using MWLogicalArray
This section covers the following topics:

• “Constructing an MWLogicalArray” on page 4-106

• “Methods to Create and Destroy an MWLogicalArray” on page 4-107

• “Methods to Return Information About an MWLogicalArray” on page 4-112

• “Methods to Get and Set Data in an MWLogicalArray” on page 4-114

• “Methods to Copy, Convert, and Compare MWLogicalArrays” on page 4-118

• “Methods to Use on Sparse MWLogicalArrays” on page 4-121

4-105

4 Using Classes and Methods

Constructing an MWLogicalArray
You can construct two types of MWLogicalArray objects – an empty logical
scalar or an initialized logical scalar or array.

Constructing an Empty Logical Scalar. To construct an empty scalar
logical of type MWClassID.LOGICAL, use

MWLogicalArray()

Constructing an Initialized Logical Scalar or Array. Use this constructor
syntax to create a MWLogicalArray scalar or array that represents the
primitive Java type javatype:

MWLogicalArray(javatype array)

The value of array is set to true if the argument is nonzero, and false
otherwise.

The type javatype can be any of the following:

• double

• float

• long

• int

• short

• byte

• boolean

• Object

Example — Constructing an Initialized Logical Array Object

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

4-106

Using Class Methods

Methods to Create and Destroy an MWLogicalArray
In addition to the MWLogicalArray constructor, you can use the newInstance
and newSparse methods to construct a logical array. These two methods offer
better performance than using the class constructor. To destroy the arrays,
use either dispose or disposeArray.

Method Description

“newInstance” on
page 4-107

Constructs a logical array with the specified
dimensions.

“newSparse” on
page 4-108

Constructs a sparse logical matrix from the supplied
full matrix.

“dispose” on page
4-111

Frees the native MATLAB array contained by this
array.

“disposeArray” on
page 4-111

Frees all native MATLAB arrays contained in the
input object.

newInstance. This method constructs a real or complex array, specifying the
array dimensions, type, and complexity. This is a static method of the class
and thus does not need to be invoked in reference to an instance of the class.

Note This method offers better performance than using the class constructor.

To construct a logical array with specified dimensions and all elements
initialized to false, use the following:

public static MWLogicalArray newInstance(int[] dims)

To construct a logical array with specified dimensions and initialized to the
supplied data, use the following:

public static MWLogicalArray newInstance(int[] dims,
Object data)

Input Parameters

dims

4-107

4 Using Classes and Methods

Array of nonnegative dimension sizes

data

Data to initialize the array

Exceptions

The newInstance method throws the following exceptions:

NegativeArraySizeException

The specified dims parameter is negative.

ArrayStoreException

The specified data is nonnumeric or non-Boolean.

Example — Constructing a Logical Array Object with newInstance

Construct a 1-by-5 logical array using the newInstance method. Note that
data in the Java array must be stored in a column-wise order so that it will be
in row-wise order in the final MWLogicalArray object.

boolean[] Adata = { true, true, false, false, true};
int[] dims = {1, 5};

MWLogicalArray A = MWLogicalArray.newInstance(dims, Adata);
System.out.println("Array A: " + A.toString());

When run, the example displays this output:

Array A: 1 1 0 0 1

newSparse. This method constructs a sparse MWLogicalArray with the
specified number of rows and columns and maximum nonzero elements, and
initializes the array with the supplied data. This is a static method of the class
and thus does not need to be invoked in reference to an instance of the class.

4-108

Using Class Methods

Supported Prototypes

Supported prototypes for newSparse are as follows. All input parameters
shown here are described under Input Parameters on page 109. Any
parameters not specified are given their default values.

To construct a sparse logical matrix with no nonzero elements, use the
following:

public static MWLogicalArray newSparse(int rows, int cols,
int nzmax)

To construct a sparse logical matrix from a supplied full matrix, use the
following:

public static MWLogicalArray newSparse(Object data)

To specify what data is assigned to each element, use the following:

public static MWLogicalArray newSparse(int[] rowindex,
int[] colindex, Object data)

To specify the number of rows and columns in the array, use the following:

public static MWLogicalArray newSparse(int[] rowindex,
int[] colindex, Object data, int rows, int cols)

To specify the maximum number of nonzero elements in the array, use the
following:

public static MWLogicalArray newSparse(int[] rowindex,
int[] colindex, Object data, int rows, int cols,
int nzmax)

Input Parameters

data

Data to initialize the array. See the list of valid data types below.

rowIndex and colIndex

4-109

4 Using Classes and Methods

Arrays of one-based row and column indices

Row and column index arrays are used to construct the sparse array such that
the following holds true, with space allocated for nzmax nonzeros:

S(rowIndex(k), colIndex(k)) = data(k)

rows and cols

Number of rows and columns in the matrix

nzmax

Maximum number of nonzero elements

Valid types for the data parameter are as follows:

• double[]

• float[]

• long[]

• int[]

• short[]

• byte[]

• boolean[]

• One-dimensional arrays of any subclass of java.lang.Number

• One-dimensional arrays of java.lang.Boolean

• One-dimensional arrays of java.lang.String

rowIndex and colIndex Parameters

Exceptions

The newSparse method throws the following exceptions:

4-110

Using Class Methods

NegativeArraySizeException

Row or column size is negative.

IndexOutOfBoundsException

The specified index parameter is invalid.

ArrayStoreException

Incompatible array type or invalid array data

Example — Constructing a Sparse Logical Array Object

Create a sparse array of logical values using the newSparse method:

boolean[] Adata = {true, true, false, false, true};

int[] ri = {1, 1, 1, 1, 1};
int[] ci = {1, 2, 3, 4, 5};

MWLogicalArray A = MWLogicalArray.newSparse(ri, ci, Adata);

System.out.println(A.toString());

When run, the example displays this output:

(1,1) 1
(1,2) 1
(1,5) 1

dispose. MWLogicalArray inherits this method from the MWArray class.

disposeArray. MWLogicalArray inherits this method from the MWArray
class.

4-111

4 Using Classes and Methods

Methods to Return Information About an MWLogicalArray
Use these methods to return information about an object of class
MWLogicalArray.

Method Description

“classID” on page 4-112 Returns the MATLAB type of this array.

“getDimensions” on page
4-114

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-114 Tests whether the array has no elements.

“numberOfDimensions” on
page 4-114

Returns the number of dimensions of this
array.

“numberOfElements” on
page 4-114

Returns the total number of elements in this
array.

classID. This method returns the MATLAB type of the MWLogicalArray
object. The classID method of MWLogicalArray overrides the classID
method of class MWArray.

The prototype for the classID method is

public MWClassID classID()

classID returns a field defined by the MWClassID class. For an
MWLogicalArray, classID returns the value MWClassID.LOGICAL.

Input Parameters

None

4-112

Using Class Methods

Example — Getting the Class ID for a Logical Array Object

Return the class ID for MWLogicalArray object Adata:

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

System.out.println("Class of A is " + A.classID());

4-113

4 Using Classes and Methods

When run, the example displays this output:

Class of A is logical

getDimensions. MWLogicalArray inherits this method from the MWArray
class.

isEmpty. MWLogicalArray inherits this method from the MWArray class.

numberOfDimensions. MWLogicalArray inherits this method from the
MWArray class.

numberOfElements. MWLogicalArray inherits this method from the
MWArray class.

Methods to Get and Set Data in an MWLogicalArray
Use these methods to get and set values in an object of class MWLogicalArray.

Method Description

“get” on page
4-114

Returns the element at the specified offset as an Object.

“getData” on
page 4-114

Returns a one-dimensional array containing a copy of
the data in the underlying MATLAB array.

“getBoolean” on
page 4-115

Returns the boolean at the specified one-based offset.

“set” on page
4-116

Replaces the element at the specified one-based offset in
this array with the specified element.

“toArray” on
page 4-118

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

get. MWLogicalArray inherits this method from the MWArray class.

getData. MWLogicalArray inherits this method from the MWArray class.

4-114

Using Class Methods

getBoolean. This method returns the element located at the specified
one-based index of the MWLogicalArray object.

To get the element at a specific index, use one of the following:

public boolean getBoolean(int index)
public boolean getBoolean(int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWLogicalArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWLogicalArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The getBoolean method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-115

4 Using Classes and Methods

Example — Getting a Boolean Value from a Logical Array

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

int[] index = {2, 2};
System.out.println("A(2,2) is " + A.getBoolean(index));

When run, the example displays this output:

A(2,2) = true

set. This method returns the element located at the specified one-based index
of the MWLogicalArray object.

To set the element at a specific index, use one of the following:

public void set(int index, boolean element)
public void set(int[] index, boolean element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

index

Index of the requested element in the MWLogicalArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

4-116

Using Class Methods

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWLogicalArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting a Value in a Logical Array

Get and modify the value at A(2,3):

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

int[] index = {2, 3};
Object d_out = A.get(index);
System.out.println("Array element A(2,3) is " +

d_out.toString() + "\n");

System.out.println("Setting A(2,3) to true\n");
A.set(index, true);

d_out = A.get(index);
System.out.println("Array element A(2,3) is " +

d_out.toString() + "\n");

When run, the example displays this output:

Array element A(2,3) is false

4-117

4 Using Classes and Methods

Setting A(2,3) to true

Array element A(2,3) is true

toArray. MWLogicalArray inherits this method from the MWArray class.

Methods to Copy, Convert, and Compare MWLogicalArrays
Use these methods to copy, convert, and compare objects of class
MWLogicalArray.

Method Description

“clone” on
page 4-118

Creates and returns a deep copy of this array.

“compareTo”
on page
4-119

Compares this array with the specified array for order.

“equals” on
page 4-119

Indicates whether some other array is equal to this one.

“hashCode”
on page
4-120

Returns a hash code value for the array.

“sharedCopy”
on page
4-120

Creates and returns a shared copy of this array.

“toString” on
page 4-120

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWLogicalArray overrides the clone method of class
MWArray.

The prototype for the clone method is

4-118

Using Class Methods

public Object clone()

Input Parameters

None

Exceptions

The clone method throws the following exception:

java.lang.CloneNotSupportedException

The object’s class does not implement the Cloneable interface.

Example — Cloning a Logical Array Object

Create a clone of MWLogicalArray object A:

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

Object C = A.clone();

System.out.println("Clone of logical matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of logical matrix A is:
1 0 0
0 1 0

compareTo. MWLogicalArray inherits this method from the MWArray class.

equals. MWLogicalArray inherits this method from the MWArray class.

4-119

4 Using Classes and Methods

hashCode. MWLogicalArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWLogicalArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWLogicalArray overrides the sharedCopy
method of class MWArray.

The prototype for the sharedCopy method is

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of a Logical Array Object

Create a shared copy of MWLogicalArray object A:

boolean[][] Adata = {{true, false, false},
{false, true, false}};

MWLogicalArray A = new MWLogicalArray(Adata);

Object C = A.sharedCopy();

System.out.println("Shared copy of logical matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Shared copy of logical matrix A is:
1 0 0
0 1 0

toString. MWLogicalArray inherits this method from the MWArray class.

4-120

Using Class Methods

Methods to Use on Sparse MWLogicalArrays
Use these methods to return information on sparse arrays of type
MWLogicalArray. All are inherited from class MWArray.

Method Description

“isSparse” on page
4-65

Tests whether the array is sparse.

“columnIndex” on page
4-66

Returns an array containing the column index of
each nonzero element in the underlying MATLAB
array.

“rowIndex” on page
4-67

Returns an array containing the row index of each
nonzero element in the underlying MATLAB array.

“maximumNonZeros”
on page 4-67

Returns the allocated capacity of a sparse array.
If the underlying array is nonsparse, this method
returns the same value as numberOfElements().

“numberOfNonZeros”
on page 4-68

Returns the number of nonzero elements in
a sparse array. If the underlying array is
nonsparse, this method returns the same value as
numberOfElements().

MWLogicalArray inherits all the above methods from the MWArray class.

Using MWCharArray
This section covers the following topics:

• “Constructing an MWCharArray” on page 4-122

• “Methods to Create and Destroy an MWCharArray” on page 4-123

• “Methods to Return Information About an MWCharArray” on page 4-125

• “Methods to Get and Set Data in the MWCharArray” on page 4-126

• “Methods to Copy, Convert, and Compare MWCharArrays” on page 4-130

4-121

4 Using Classes and Methods

Constructing an MWCharArray
Use the tables in this section to construct an MWCharArray from a particular
Java data type. See the examples in this section for more help.

Constructing an Empty Character Array. To construct an empty
MWCharArray, use

MWCharArray()

To construct a MWCharArray object from a primitive Java char scalar, use
the following prototype:

MWCharArray(char value)

To construct a MWCharArray object from a Java Object, use

MWCharArray(Object value)

Input Parameters

value

Value to initialize the array

Valid argument types for value are as follows:

• N-dimensional primitive char arrays

• java.lang.String

• N-dimensional arrays of java.lang.String

• java.lang.Character

• N-dimensional arrays of java.lang.Character

Example — Constructing an Initialized Character Array Object

Construct one MWCharArray object from a primitive character array:

char[] chArray1 = {'H', 'e', 'l', 'l', 'o'};

4-122

Using Class Methods

char[] chArray2 = {'W', 'o', 'r', 'l', 'd'};
MWCharArray A = new MWCharArray(chArray1);

System.out.println("The string in MWCharArray1 is \"" + A + "\"");

Construct a second MWCharArray from a String object:

String str = new String(chArray2);
MWCharArray A2 = new MWCharArray(str);

System.out.println("The string in MWCharArray2 is \"" +
A2 + "\"");

When run, the example displays this output:

The string in MWCharArray1 is "Hello"

The string in MWCharArray2 is "World"

Methods to Create and Destroy an MWCharArray
In addition to the MWCharArray constructor, you can use the newInstance
method to construct a character array. This method offers better performance
than using the class constructor. To destroy the array, use either dispose
or disposeArray.

Method Description

“newInstance”
on page 4-123

Constructs a char array with the specified dimensions.

“dispose” on
page 4-124

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-125

Frees all native MATLAB arrays contained in the input
object.

newInstance. This method constructs a char array with the specified
dimensions and initializes the array with the supplied data. The input array
must be of type char[] or java.lang.String. The characters in the array
are assumed to be stored in column-major order.

4-123

4 Using Classes and Methods

To construct a MWCharArray object with the specified dimensions, use

public static MWCharArray newInstance(int[] dims)

The elements of the array are all initialized to zero.

To construct a MWCharArray object with the specified dimensions and
initialized with the supplied data, use

public static MWCharArray newInstance(int[] dims,
Object data)

Input Parameters

dims

Array of dimension sizes. Each dimension size must be nonnegative.

data

Data to initialize the array

Example — Constructing a Character Array Object with newInstance

Create an MWCharArray object containing the text Hello:

int[] dims = {1, 5};
char[] chArray = {'H', 'e', 'l', 'l', 'o'};
String str = new String(chArray);

MWCharArray A =
MWCharArray.newInstance(dims, str);

System.out.println("The array string is \"" + A + "\"");

When run, the example displays this output:

The array string is "Hello"

dispose. MWCharArray inherits this method from the MWArray class.

4-124

Using Class Methods

disposeArray. MWCharArray inherits this method from the MWArray class.

Methods to Return Information About an MWCharArray
Use these methods to return information about an object of class MWCharArray.

Method Description

“classID” on page 4-125 Returns the MATLAB type of this array.

“getDimensions” on
page 4-126

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page
4-126

Tests whether the array has no elements.

“numberOfDimensions”
on page 4-126

Returns the number of dimensions of this array.

“numberOfElements”
on page 4-126

Returns the total number of elements in this
array.

classID. This method returns the MATLAB type of the MWCharArray object.
The classID method of MWCharArray overrides the classID method of class
MWArray.

The prototype for the classID method is

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of a Character Array

Create an MWCharArray object and then display the class ID:

char[] chArray1 = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray1);

System.out.println("The class of A is " + A.classID());

4-125

4 Using Classes and Methods

When run, the example displays this output:

The class of A is char

getDimensions. MWCharArray inherits this method from the MWArray class.

isEmpty. MWCharArray inherits this method from the MWArray class.

numberOfDimensions. MWCharArray inherits this method from the
MWArray class.

numberOfElements. MWCharArray inherits this method from the MWArray
class.

Methods to Get and Set Data in the MWCharArray
Use these methods to get and set values in an object of class MWCharArray.

Method Description

“get” on page
4-126

Returns the element at the specified offset as an
Object.

“getData” on page
4-126

Returns a one-dimensional array containing a copy of
the data in the underlying MATLAB array.

“getChar” on page
4-127

Returns the character at the specified one-based offset.

“set” on page
4-128

Replaces the element at the specified one-based offset
in this array with the specified element.

“toArray” on page
4-130

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

get. MWCharArray inherits this method from the MWArray class.

getData. MWCharArray inherits this method from the MWArray class.

4-126

Using Class Methods

getChar. This method returns the character located at the specified
one-based index of the MWCharArray object.

To get the element at a specific index, use one of

public char getChar(int index)
public char getChar(int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWCharArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCharArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The getChar method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-127

4 Using Classes and Methods

Example — Getting Character Array Data with getChar

Use getChar to display the string stored in MWCharArray object A:

char[] chArray = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray);

for (int i = 1; i <= 5; i++)
System.out.print(A.getChar(i));

When run, the example displays this output:

Hello

set. This method replaces the character located at the specified one-based
offset in the MWCharArray object with the specified char value.

To set the element at a specific index, use one of

public void set(int index, char element);
public void set(int[] index, char element);

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

index

Index of the requested element in the MWCharArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

4-128

Using Class Methods

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCharArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting Values in a Character Array

Display a phrase stored in MWCharArray object A, change one of the characters,
and then display the modified phrase:

char[] chArray = {'G', 'a', 'r', 'y'};
MWCharArray A = new MWCharArray(chArray);

System.out.println(" I think " + A + " lives here." + "\n");

System.out.println("Changing the first character to M ...\n");
int[] index = {1, 1};
A.set(index, 'M');

System.out.println(" I think " + A + " lives here." + "\n");

When run, the example displays this output:

I think Gary lives here.

Changing the first character to M ...

I think Mary lives here.

4-129

4 Using Classes and Methods

toArray. MWCharArray inherits this method from the MWArray class.

Methods to Copy, Convert, and Compare MWCharArrays
Use these methods to copy, convert, and compare objects of class MWCharArray.

Method Description

“clone” on page
4-130

Creates and returns a deep copy of this array.

“compareTo” on
page 4-131

Compares this array with the specified array for order.

“equals” on page
4-131

Indicates whether some other array is equal to this one.

“hashCode” on
page 4-131

Returns a hash code value for the array.

“sharedCopy” on
page 4-131

Creates and returns a shared copy of this array.

“toString” on page
4-132

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWCharArray overrides the clone method of class
MWArray.

The prototype for the clone method is

public Object clone()

Input Parameters

None

4-130

Using Class Methods

Example — Cloning a Character Array Object

Create a clone of MWCharArray object A:

char[] chArray = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray);

Object C = A.clone();

System.out.println("Clone of matrix A is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of matrix A is:
Hello

compareTo. MWCharArray inherits this method from the MWArray class.

equals. MWCharArray inherits this method from the MWArray class.

hashCode. MWCharArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWCharArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWCharArray overrides the sharedCopy method
of class MWArray.

The prototype for the sharedCopy method is

public Object sharedCopy();

Input Parameters

None

4-131

4 Using Classes and Methods

Example — Making a Shared Copy of a Character Array Object

Create a shared copy of MWCharArray object A:

char[] chArray = {'H', 'e', 'l', 'l', 'o'};
MWCharArray A = new MWCharArray(chArray);

Object S = A.sharedCopy();

System.out.print("Shared copy of matrix A is \"" +
S.toString() + "\"");

When run, the example displays this output:

Shared copy of matrix A is "Hello"

toString. MWCharArray inherits this method from the MWArray class.

Using MWStructArray
This section covers the following topics:

• “Constructing an MWStructArray” on page 4-132

• “Methods to Destroy an MWStructArray” on page 4-134

• “Methods to Return Information About an MWStructArray” on page 4-135

• “Methods to Get and Set Data in the MWStructArray” on page 4-138

• “Methods to Copy, Convert, and Compare MWStructArrays” on page 4-146

Constructing an MWStructArray
Use the tables in this section to construct an MWStructArray from a particular
Java data type. See the examples at the end of this section for more help.

Constructing an Empty Structure Array. To construct an empty 0-by-0
MATLAB structure array, use

MWStructArray()

4-132

Using Class Methods

To construct an MWStructArray object with the specified dimensions and
field names, use

MWStructArray(int[] dims, java.lang.String[] fieldnames)

To construct an MWStructArray object with the specified number of rows
and columns, and field names, use

MWStructArray(int rows, int cols, java.lang.String[] fieldnames)

Input Parameters

dims

Array of dimension sizes. Each dimension size must be nonnegative.

fieldnames

Array of field names

rows

Number of rows in the array. This number must be nonnegative.

cols

Number of columns in the array. This number must be nonnegative.

Example — Constructing a Structure Array Object

This first example creates a 0-by-0 MWStructArray object:

MWStructArray S = new MWStructArray();
System.out.println("Structure array S: " + S);

When run, the example displays this output:

Structure array S: []

4-133

4 Using Classes and Methods

The second example creates a 1-by-2 MWStructArray object with fields f1,
f2, and f3:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};

MWStructArray S = new MWStructArray(sdims, sfields);

System.out.println("Structure array S: " + S);

When run, the example displays this output:

Structure array S: 1x2 struct array with fields:
f1
f2
f3

Methods to Destroy an MWStructArray
To destroy the arrays, use either dispose or disposeArray.

Method Description

“dispose” on
page 4-134

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-135

Frees all native MATLAB arrays contained in the input
object.

dispose. The dispose method of MWStructArray overrides the dispose
method of class MWArray.

The prototype for the dispose method is

public void dispose()

Input Parameters

None

4-134

Using Class Methods

Example — Disposing of a Structure Array Object

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};

MWStructArray S = new MWStructArray(sdims, sfields);

System.out.println("Structure array S: " + S);
System.out.println("Now disposing of array S\n");
S.dispose();

System.out.println("Structure array S: " + S);

When run, the example displays this output:

Structure array S: 1x2 struct array with fields:
f1
f2
f3

Now disposing of array S

Structure array S: []

disposeArray. MWStructArray inherits this method from the MWArray class.

Methods to Return Information About an MWStructArray
Use these methods to return information about an object of class
MWStructArray.

Method Description

“classID” on page 4-136 Returns the MATLAB type of this array.

“fieldNames” on page
4-136

Returns the field names in this array.

“getDimensions” on page
4-137

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-137 Tests whether the array has no elements.

4-135

4 Using Classes and Methods

Method Description

“numberOfDimensions” on
page 4-137

Returns the number of dimensions of this
array.

“numberOfElements” on
page 4-137

Returns the total number of elements in this
array.

“numberOfFields” on page
4-137

Returns the number of fields in this array.

classID. This method returns the MATLAB type of this array. The classID
method of MWStructArray overrides the classID method of class MWArray.

The prototype for the classID method is

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of a Structure Array

Create an MWStructArray object and display the class ID:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};

MWStructArray S = new MWStructArray(sdims, sfields);

System.out.println("The class of S is " + S.classID());

When run, the example displays this output:

The class of S is struct

fieldNames. This method returns the field names in this array.

The prototype for the fieldNames method is

4-136

Using Class Methods

public java.lang.String[] fieldNames()

Input Parameters

None

Example — Getting the Field Names of a Structure Array

Create an MWStructArray object with three fields and display the field names:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

String[] str = S.fieldNames();

System.out.print("The structure has the fields: ");
for (int i=0; i<S.numberOfFields(); i++)

System.out.print(" " + str[i]);

When run, the example displays this output:

The structure has the fields: f1 f2 f3

getDimensions. MWStructArray inherits this method from the MWArray
class.

isEmpty. MWStructArray inherits this method from the MWArray class.

numberOfDimensions. MWStructArray inherits this method from the
MWArray class.

numberOfElements. MWStructArray inherits this method from the MWArray
class.

numberOfFields. This method returns the number of fields in this array.

The prototype for the numberOfFields method is

4-137

4 Using Classes and Methods

public int numberOfFields()

Input Parameters

None

Example — Getting the Number of Fields in a Structure Array

Create an MWStructArray object with three fields and display the number
of fields:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

String[] str = S.fieldNames();

System.out.println("There are " + S.numberOfFields() +
" fields in this structure.");

When run, the example displays this output:

There are 3 fields in this structure.

Methods to Get and Set Data in the MWStructArray
Use these methods to get and set values in an object of class MWStructArray.

Method Description

“get” on
page 4-139

Returns the element at the specified offset as an Object.

“getData”
on page
4-141

Returns a one-dimensional array containing a copy of the data
in the underlying MATLAB array.

4-138

Using Class Methods

Method Description

“getField”
on page
4-142

Returns a shared copy of the element at the specified one-based
offset and field name in this array as an MWArray instance.

“set” on
page 4-143

Replaces the element at the specified one-based offset in this
array with the specified element.

“toArray”
on page
4-145

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the same
dimensionality as the MATLAB array.

get. This method returns the element at the specified one-based offset in
this array. The returned element is converted to a Java array using default
conversion rules.

To get the element at a specific index, use one of the following. Calling this
method is equivalent to calling getField(index).toArray().

public Object get(int index)
public Object get(int[] index)

To get the element at a specific index and structure field, use one of the
following. Calling this method is equivalent to calling getField(fieldname,
index).toArray().

public Object get(String fieldname, int index)
public Object get(String fieldname, int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

fieldname

Field name of the requested element

4-139

4 Using Classes and Methods

index

Index of the requested element in the MWStructArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWStructArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Getting Structure Array Data with get

int[] cdims = {1, 3};
MWStructArray C = new MWStructArray(cdims);
Integer val = new Integer(15);
int[] index2 = {1, 3};
C.set(index2, val);
Object x = C.get(index2);
if (x instanceof int[][])
{
int[][] y = (int[][])x;

System.out.println("B: Cell data C(1,3) is " + y[0][0]);
}

When run, the example displays this output:

B: Cell data C(1,3) is 15

4-140

Using Class Methods

getData. This method returns a one-dimensional array containing a copy
of the data in the underlying MATLAB array. The getData method of
MWStructArray overrides the getData method of class MWArray.

The prototype for the getData method is

public Object getData()

getData returns a one-dimensional array of elements stored in column-wise
order. Before converting, a new array is derived by transforming the struct
array into a cell array such that an N-by-M-by-... struct array with P fields
is transformed into a P-by-N-by-M-by-... cell array. Each element in the
returned array is converted to a Java array when you call MWArray.toArray()
on the corresponding cell.

Input Parameters

None

Example — Getting Structure Array Data with getData

Get the data stored in all fields and indices of MWStructArray object S:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

int count = S.numberOfElements() * S.numberOfFields();

// Initialize the structure.
Integer[] val = new Integer[6];
for (int i = 0; i < count; i++)

val[i] = new Integer((i+1) * 15);

// Use getData to get data from the structure.
System.out.println("Data read from structure array S: \n");
MWArray[] x = (MWArray[]) S.getData();
for (int i = 0; i < x.length; i++)

4-141

4 Using Classes and Methods

System.out.print(" " + x[i]);

When run, the example displays this output:

Data read from structure array S:

15
30
45
60
75
90

getField. This method returns a shared copy of the element at the specified
one-based index array and field name in this array as an MWArray instance.

To get the element at a specific index, use one of

public MWArray getField(int index)
public MWArray getField(int[] index)

To get the element at a specific index and structure field, use one of

public MWArray getField(String fieldname, int index)
public MWArray getField(String fieldname, int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Dispose of the returned MWArray reference by calling MWArray.dispose().

Input Parameters

fieldname

Field name of the requested element

4-142

Using Class Methods

index

Index of the requested element in the MWStructArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWStructArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid

set. This method returns the element at the specified one-based offset in
this array. The set method of MWStructArray overrides the set method of
class MWArray.

To set the element at a specific index, use one of

public void set(int index, Object element)
public void set(int[] index, Object element)

To set the element at a specific index and structure field, use one of

public void set(String fieldname, int index, Object element)
public void set(String fieldname, int[] index, Object element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

4-143

4 Using Classes and Methods

Input Parameters

fieldname

Field name of the requested element

index

Index of the requested element in the MWStructArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWStructArray object. The valid
range for any index is 1 <= index[i] <= N[i], where N[i] is the size of the
ith dimension.

element

New element to replace at index

If element is of type MWArray, the cell at index is set to a shared copy of the
underlying MATLAB array. Otherwise, a new MATLAB array is created from
element using default conversion rules and assigned to the cell at index.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting Values in a Structure Array

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};

4-144

Using Class Methods

MWStructArray S = new MWStructArray(sdims, sfields);

Integer[] val = new Integer[25];
for (int i = 0; i < 6; i++)

val[i] = new Integer(i * 15);

for (int i = 0; i < 2; i++)
for (int j = 0; j < sfields.length; j++)

S.set(sfields[j], i+1, val[j + (i * 3)]);

// Use getData to get data from the structure.
System.out.println("Data read from structure array S: \n");
Object[] x = (Object[]) S.getData();
for (int i = 0; i < x.length; i++)

System.out.print(" " + ((int[][]) x[i])[0][0]);

When run, the example displays this output:

Data read from structure array S:

0 15 30 45 60 75

toArray. This method returns an array containing a copy of the data in the
underlying MATLAB array.

The prototype for the toArray method is

public Object[] toArray()

toArray returns an array with the same dimensionality as the MATLAB
array. Before converting, a new array is derived by transforming the struct
array into a cell array such that an N-by-M-by-... struct array with P fields
is transformed into a P-by-N-by-M-by-... cell array. Each element in the
returned array is converted to a Java array when you call MWArray.toArray()
on the corresponding cell.

Input Parameters

None

4-145

4 Using Classes and Methods

Example — Getting Structure Array Data with toArray

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

Integer[] val = new Integer[25];
for (int i = 0; i < 6; i++)

val[i] = new Integer(i * 15);

for (int i = 0; i < 2; i++)
for (int j = 0; j < sfields.length; j++)

S.set(sfields[j], i+1, val[j + (i * 3)]);

Object[][][] x = (Object[][][]) S.toArray();
System.out.println();

System.out.println("Data read from structure array S \n");
for (int j = 0; j < 2; j++)

for (int i = 0; i < x.length; i++)
System.out.print(" " + ((int[][]) x[i][0][j])[0][0]);

When run, the example displays this output:

Data read from structure array S

0 15 30 45 60 75

Methods to Copy, Convert, and Compare MWStructArrays
Use these methods to copy, convert, and compare objects of class
MWStructArray.

Method Description

“clone” on page
4-147

Creates and returns a deep copy of this array.

“compareTo”
on page 4-148

Compares this array with the specified array for order.

4-146

Using Class Methods

Method Description

“equals” on
page 4-148

Indicates whether some other array is equal to this one.

“hashCode” on
page 4-148

Returns a hash code value for the array.

“sharedCopy”
on page 4-148

Creates and returns a shared copy of this array.

“toString” on
page 4-149

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWStructArray overrides the clone method of class
MWArray.

The prototype for the clone method is

public Object clone()

Input Parameters

None

Exceptions

The clone method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

4-147

4 Using Classes and Methods

Example — Cloning a Structure Array Object

Create an MWStructArray object and then a clone of that object:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

Object C = S.clone();

System.out.println("Clone of structure S is:");
System.out.println(C.toString());

When run, the example displays this output:

Clone of structure S is:
1x2 struct array with fields:

f1
f2
f3

compareTo. MWStructArray inherits this method from the MWArray class.

equals. MWStructArray inherits this method from the MWArray class.

hashCode. MWStructArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWStructArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWStructArray overrides the sharedCopy method
of class MWArray.

The prototype for the sharedCopy method is

public Object sharedCopy()

4-148

Using Class Methods

Input Parameters

None

Example — Making a Shared Copy of a Structure Array Object

Create an MWStructArray object and then a shared copy of that object:

int[] sdims = {1, 2};
String[] sfields = {"f1", "f2", "f3"};
MWStructArray S = new MWStructArray(sdims, sfields);

Object C = S.sharedCopy();

System.out.println("Shared copy of structure S is:");
System.out.println(C.toString());

When run, the example displays this output:

Shared copy of structure S is:
1x2 struct array with fields:

f1
f2
f3

toString. MWStructArray inherits this method from the MWArray class.

Using MWCellArray
This section covers the following topics:

• “Constructing an MWCellArray” on page 4-150

• “Methods to Destroy an MWCellArray” on page 4-151

• “Methods to Return Information About an MWCellArray” on page 4-152

• “Methods to Get and Set Data in the MWCellArray” on page 4-154

• “Methods to Copy, Convert, and Compare MWCellArrays” on page 4-161

4-149

4 Using Classes and Methods

Constructing an MWCellArray
Use the tables in this section to construct an MWCellArray from a particular
Java data type. See the examples at the end of this section for more help:

Constructing an Empty Cell Array. To construct an empty 0-by-0 MATLAB
cell array, use

MWCellArray();

To construct an MWCellArray object with the specified dimensions, use

MWCellArray(int[] dims);

To construct an MWCellArray object with the specified number of rows and
columns, use

MWCellArray(int rows, int cols);

Input Parameters

dims

Array of dimension sizes

rows

Number of rows

cols

Number of columns

Exceptions

The MWCellArray constructor throws the following exception:

NegativeArraySizeException

The specified dims parameter is negative.

4-150

Using Class Methods

Example — Constructing an Empty Cell Array Object

This first example creates an empty MWCellArray object:

MWCellArray C = new MWCellArray();
System.out.println("C = " + C.toString());

When run, the example displays this output:

C = []

Example — Constructing an Initialized Cell Array Object

The second example constructs and initializes a 2-by-3 MWCellArray object:

int[] cdims = {2, 3};
MWCellArray C = new MWCellArray(cdims);

Integer[] val = new Integer[6];
for (int i = 0; i < 6; i++)

val[i] = new Integer(i * 15);

for (int i = 0; i < 2; i++)
for (int j = 0; j < 3; j++)

{
int[] idx = {i+1, j+1};
C.set(idx, val[j + (i * 3)]);
}

System.out.println("C = " + C.toString());

When run, the example displays this output:

C = [0] [15] [30]
[45] [60] [75]

Methods to Destroy an MWCellArray
To destroy the arrays, use either dispose or disposeArray.

4-151

4 Using Classes and Methods

Method Description

“dispose” on
page 4-152

Frees the native MATLAB array contained by this array.

“disposeArray”
on page 4-152

Frees all native MATLAB arrays contained in the input
object.

dispose. This method frees the native MATLAB array contained by this
array. The dispose method of MWCellArray overrides the dispose method
of class MWArray.

The prototype for the dispose method is as follows:

public void dispose()

All MWArray references returned by get(int), toArray(), or getData() are
also disposed of.

Input Parameters

None

Example — Disposing of a Cell Array Object

Create a 2-by-3 MWCellArray object and then dispose of it.

int[] cdims = {2, 3};
MWCellArray C = new MWCellArray(cdims);

C.dispose();

disposeArray. MWCellArray inherits this method from the MWArray class.

Methods to Return Information About an MWCellArray
Use these methods to return information about an object of class MWCellArray.

4-152

Using Class Methods

Method Description

“classID” on page 4-153 Returns the MATLAB type of this array.

“getDimensions” on page
4-153

Returns an array containing the size of each
dimension of this array.

“isEmpty” on page 4-154 Tests whether the array has no elements.

“numberOfDimensions”
on page 4-154

Returns the number of dimensions of this array.

“numberOfElements” on
page 4-154

Returns the total number of elements in this
array.

classID. This method returns the MATLAB type of this array. The classID
method of MWCellArray overrides the classID method of class MWArray.

The prototype for the classID method is

public MWClassID classID()

Input Parameters

None

Example — Getting the Class ID of a Cell Array

Create an MWCellArray object and display its class:

int[] cdims = {2, 3};
MWCellArray C = new MWCellArray(cdims);

System.out.println("Class of C is " + C.classID());

When run, the example displays this output:

Class of C is cell

getDimensions. MWCellArray inherits this method from the MWArray class.

4-153

4 Using Classes and Methods

isEmpty. MWCellArray inherits this method from the MWArray class.

numberOfDimensions. MWCellArray inherits this method from the
MWArray class.

numberOfElements. MWCellArray inherits this method from the MWArray
class.

Methods to Get and Set Data in the MWCellArray
Use these methods to get and set values in an object of class MWCellArray.

Method Description

“get” on page
4-154

Returns the element at the specified offset as an Object.

“getCell” on
page 4-156

Returns a shared copy of the element at the specified
one-based offset in this array as an MWArray instance.

“getData” on
page 4-157

Returns a one-dimensional array containing a copy of the
data in the underlying MATLAB array.

“set” on page
4-158

Replaces the element at the specified one-based offset in
this array with the specified element.

“toArray” on
page 4-160

Returns an array containing a copy of the data in the
underlying MATLAB array. The returned array has the
same dimensionality as the MATLAB array.

get. This method returns the element at the specified one-based offset
in this array. The returned element is converted to a Java array using
default conversion rules. Calling this method is equivalent to calling
getCell(index).toArray().

The get method of MWCellArray overrides the get method of class MWArray.

To get the element at a specific index, use one of the following:

public Object get(int index)
public Object get(int[] index)

4-154

Using Class Methods

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

index

Index of the requested element in the MWCellArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCellArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The get method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Getting Data from a Cell Array with get

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);
Integer val = new Integer(15);
int[] index2 = {1, 3};
C.set(index2, val);
Object x = C.get(index2);
if (x instanceof int[][])
{

4-155

4 Using Classes and Methods

int[][] y = (int[][])x;
System.out.println("B: Cell data C(1,3) is " + y[0][0]);

}

When run, the example displays this output:

B: Cell data C(1,3) is 15

getCell. This method returns a shared copy of the element at the specified
one-based offset in this array as an MWArray instance.

To get the element at a specific index, use one of the following:

public MWArray getCell(int index)
public MWArray getCell(int[] index)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

getCell returns an MWArray instance representing the requested cell. When
you are done using this instance, call MWArray.dispose() to dispose of it.

Input Parameters

index

Index of the requested element in the MWCellArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCellArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

4-156

Using Class Methods

Exceptions

The getCell method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

getData. This method returns a one-dimensional array containing a copy
of the data in the underlying MATLAB array. The getData method of
MWCellArray overrides the getData method of class MWArray.

The prototype for the getData method is as follows:

public Object getData()

getData returns a one-dimensional array of elements stored in column-wise
order. Each element in the returned array is converted to a Java array when
you call MWArray.toArray() on the corresponding cell.

Input Parameters

None

Example — Getting Cell Array Data with getData

Use getData to read data from MWCellArray object C:

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Integer[] val = new Integer[3];
for (int i = 0; i < 3; i++)

val[i] = new Integer(i * 15);

for (int i = 1; i <= 3; i++)
C.set(i, val[i-1]);

4-157

4 Using Classes and Methods

System.out.println("Data read from cell array C: \n");
MWArray[] x = (MWArray[]) C.getData();

for (int i = 0; i < x.length; i++)
System.out.println(x[i]);

System.out.println();

When run, the example displays this output:

Data read from cell array C:
0
0
0

set. This method replaces the element at the specified one-based offset in this
array with the specified element. The set method of MWCellArray overrides
the set method of class MWArray.

To get the element at a specific index, use one of the following:

public void set(int index, Object element)
public void set(int[] index, Object element)

Use the first syntax (int index) to return the element at the specified
one-based offset in the array, accessing elements in column-wise order. Use the
second syntax (int[] index) to return the element at the specified array of
one-based indices. The first syntax offers better performance than the second.

Input Parameters

element

New element to replace at index

If element is of type MWArray, the cell at index is set to a shared copy of the
underlying MATLAB array. Otherwise, a new MATLAB array is created from
element using default conversion rules and assigned to the cell at index.

4-158

Using Class Methods

index

Index of the requested element in the MWCellArray

In the case where index is of type int, the valid range for index is 1 <= index
<= N, where N is the total number of elements in the array.

In the case where index is of type int[], each element of the index vector
is an index along one dimension of the MWCellArray object. The valid range
for any index is 1 <= index[i] <= N[i], where N[i] is the size of the ith
dimension.

Exceptions

The set method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Setting Values in a Cell Array

Set the value of the MWCellArray object C at index (1,3):

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Integer val = new Integer(15);
int[] index = {1, 3};

C.set(index, val);

Object x = C.get(index);
System.out.println("Cell data C(1,3) is " + x.toString());

When run, the example displays this output:

Cell data C(1,3) is 15

4-159

4 Using Classes and Methods

toArray. This method returns an array containing a copy of the data in the
underlying MATLAB array.

The prototype for the toArray method is as follows:

public Object[] toArray()

toArray returns an array with the same dimensionality as the MATLAB
array. Each element in the returned array is converted to a Java array when
you call MWArray.toArray() on the corresponding cell.

Input Parameters

None

Example — Getting Cell Array Data with toArray

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

System.out.println("Data read from cell array C \n");
Object x = (Object) C.toArray();
System.out.println();

for (int i = 0; i < x[0].length; i++)
System.out.println(x[0][i]);

When run, the example displays this output:

Data read from cell array C
[]
[]
[]

4-160

Using Class Methods

Methods to Copy, Convert, and Compare MWCellArrays
Use these methods to copy, convert, and compare objects of class MWCellArray.

Method Description

“clone” on
page 4-161

Creates and returns a deep copy of this array.

“compareTo”
on page
4-162

Compares this array with the specified array for order.

“equals” on
page 4-162

Indicates whether some other array is equal to this one.

“hashCode”
on page
4-162

Returns a hash code value for the array.

“sharedCopy”
on page
4-162

Creates and returns a shared copy of this array.

“toString” on
page 4-163

Returns a string representation of the array.

clone. This method creates and returns a deep copy of this array. Because
clone allocates a new array, any changes made to this new array are not
reflected in the original.

The clone method of MWCellArray overrides the clone method of class
MWArray.

The prototype for the clone method is as follows:

public Object clone()

Input Parameters

None

4-161

4 Using Classes and Methods

Exceptions

The clone method throws the following exception:

IndexOutOfBoundsException

The specified index parameter is invalid.

Example — Cloning a Cell Array Object

Create an MWCellArray object and then a clone of that object:

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Object X = C.clone();

System.out.println("Clone of cell array C is:");
System.out.println(X.toString());

When run, the example displays this output:

Clone of cell array C is:
[] [] []

compareTo. MWCellArray inherits this method from the MWArray class.

equals. MWCellArray inherits this method from the MWArray class.

hashCode. MWCellArray inherits this method from the MWArray class.

sharedCopy. This method creates and returns a shared copy of the
MWCellArray object. The shared copy points to the underlying original
MATLAB array. Any changes made to the copy are reflected in the original.

The sharedCopy method of MWCellArray overrides the sharedCopy method
of class MWArray.

The prototype for the sharedCopy method is

4-162

Using Class Methods

public Object sharedCopy()

Input Parameters

None

Example — Making a Shared Copy of a Cell Array Object

Create an MWCellArray object and then a shared copy of that object:

int[] cdims = {1, 3};
MWCellArray C = new MWCellArray(cdims);

Object X = C.sharedCopy();

System.out.println("Shared copy of cell array C is:");
System.out.println(X.toString());

When run, the example displays this output:

Shared copy of cell array C is:
[] [] []

toString. MWCellArray inherits this method from the MWArray class.

Using MWClassID
The MWClassID class enumerates all MATLAB array types. This class
contains no public constructors. A set of public static MWClassID instances is
provided, one for each MATLAB array type.

MWClassID extends class java.lang.Object.

MWClassID implements interface java.io.Serializable.

Fields of MWClassID

CELL. CELL represents MATLAB array type cell.

4-163

4 Using Classes and Methods

CHAR. CHAR represents MATLAB array type char.

DOUBLE. DOUBLE represents MATLAB array type double.

FUNCTION. FUNCTION represents MATLAB array type function.

Note MATLAB function arrays are not supported in the current release.

INT8. INT8 represents MATLAB array type int8.

INT16. INT16 represents MATLAB array type int16.

INT32. INT32 represents MATLAB array type int32.

INT64. INT64 represents MATLAB array type int64.

LOGICAL. LOGICAL represents MATLAB array type logical.

OBJECT. OBJECT represents MATLAB array type object.

Note MATLAB object arrays are not supported in the current release.

OPAQUE. OPAQUE represents MATLAB array type opaque.

SINGLE. SINGLE represents MATLAB array type single.

STRUCT. STRUCT represents MATLAB array type struct.

UINT8. UINT8 represents MATLAB array type uint8.

UINT16. UINT16 represents MATLAB array type uint16.

UINT32. UINT32 represents MATLAB array type uint32.

UINT64. UINT64 represents MATLAB array type uint64.

4-164

Using Class Methods

UNKNOWN. UNKNOWN represents MATLAB empty array type.

Example — Specifying an MWClassID Value

Construct a scalar numeric array of type MWClassID.INT16:

double AReal = 24;

MWNumericArray A = new MWNumericArray(AReal, MWClassID.INT16);
System.out.println("Array A of type " + A.classID() + " = \n" + A);

When you run this example, the results are as follows:

Array A of type int16 =
24

Methods of MWClassID

equals. This method indicates whether some other MWClassID is equal to
this one. The equals method of MWClassID overrides the equals method
of class java.lang.Object.

The prototype for equals is as follows:

public final boolean equals(java.lang.Object obj)

getSize. This method returns the size in bytes of an array element of this
type.

The prototype for getSize is as follows:

public final int getSize()

hashCode. This method returns a hash code value for the type. The
hashCode method of MWClassID overrides the hashCode method of class
java.lang.Object.

The prototype for hashCode is as follows:

public final int hashCode()

4-165

4 Using Classes and Methods

isNumeric. This method tests if this type is numeric.

The prototype for isNumeric is as follows:

public boolean isNumeric()

toString. This method returns a string representation of the property. The
toString method of MWClassID overrides the toString method of class
java.lang.Object.

The prototype for toString is as follows:

public final java.lang.String toString()

Using MWComplexity
The MWComplexity class enumerates the MATLAB real/complex array
property. This class contains no public constructors. A set of public static
MWComplexity instances is provided, one to represent real and one for
complex.

MWComplexity extends class java.lang.Object.

MWComplexity implements interface java.io.Serializable.

Fields of MWComplexity

REAL. REAL represents a real numeric value. The prototype for REAL is as
follows:

public static final MWComplexity REAL

COMPLEX. COMPLEX represents a complex numeric value containing both real
and imaginary parts. The prototype for COMPLEX is as follows:

public static final MWComplexity COMPLEX

4-166

Using Class Methods

Example – Determining the Complexity of an Array

Determine whether matrix A is real or complex. The complexity method of
MWNumericArray returns an enumeration of type MWComplexity.

double AReal = 24;
double AImag = 5;

MWNumericArray A = new MWNumericArray(AReal, AImag);
System.out.println("A is a " + A.complexity() + " matrix");

When run, the example displays this output:

A is a complex matrix

Methods of MWComplexity

toString. This method returns a string representation of the property. The
toString method of MWComplexity overrides the toString method of class
java.lang.Object.

The prototype for the toString method is as follows:

public java.lang.String toString()

4-167

4 Using Classes and Methods

4-168

5

Sample Java Applications

Plot Example (p. 5-2) How to encapsulate a MATLAB
function that draws a plot given two
input arguments

Spectral Analysis Example (p. 5-8) How to create a class that has two
methods

Matrix Math Example (p. 5-16) How to create and use a class with
three methods that encapsulate
MATLAB functions

Phonebook Example (p. 5-28) How to encapsulate a MATLAB
function that draws a plot given two
input arguments

Buffered Image Creation Example
(p. 5-37)

How to create a buffered image
from a MATLAB function such as
surf(peaks)

Optimization Example (p. 5-42) Use MWJavaObjectRef to create
a reference to a Java object and
pass it to a component using an
optimization example

Note Remember to double-quote all parts of the java command paths that
contain spaces. To test directly against the MCR when executing java,
substitute mcrroot for matlabroot, where mcrroot is the location where
the MCR is installed on your system.

5 Sample Java Applications

Plot Example
The purpose of the example is to show you how to do the following:

• Use MATLAB Builder for Java to convert a MATLAB function (drawplot)
to a method of a Java class (plotter) and wrap the class in a Java
component (plotdemo).

• Access the component in a Java application (createplot.java) by
instantiating the plotter class and using the MWArray class library to
handle data conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• Build and run the createplot.java application.

The drawplot function displays a plot of input parameters x and y.

Plot Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

matlabroot\toolbox\javabuilder\Examples\PlotExample

b. At the MATLAB command prompt, cd to the new PlotExample
subdirectory in your work directory.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 7-2.

3 Write the drawplot function as you would any MATLAB function.

The following code defines the drawplot function:

function drawplot(x,y)

5-2

Plot Example

plot(x,y);

This code is already in your work directory in
PlotExample\PlotDemoComp\drawplot.m.

4 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

5 In MATLAB, Click File > New Deployment Project.

6 In the New Deployment Project dialog, select MATLAB Builder for Java
and Java Package.

7 Select plotdemo as the name of the project and click OK.

8 In the Deployment Tool, select plotdemo.class and right-click. Select
Rename and type plotter.

9 Select Generate Verbose Output.

10 Add the drawplot.m file to the project

11 Save the project.

12 Build the component.

13 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\javabuilder\Examples\PlotExample
\PlotDemoJavaApp\createplot.java.

The program graphs a simple parabola from the equation .

5-3

5 Sample Java Applications

The program listing is shown here.

createplot.java

/* createplot.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2007 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import plotdemo.*;

/*

* createplot class demonstrates plotting x-y data into

* a MATLAB figure window by graphing a simple parabola.

*/

class createplot

{

public static void main(String[] args)

{

MWNumericArray x = null; /* Array of x values */

MWNumericArray y = null; /* Array of y values */

plotter thePlot = null; /* Plotter class instance */

int n = 20; /* Number of points to plot */

try

{

/* Allocate arrays for x and y values */

int[] dims = {1, n};

x = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

y = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

/* Set values so that y = x^2 */

for (int i = 1; i <= n; i++)

{

5-4

Plot Example

x.set(i, i);

y.set(i, i*i);

}

/* Create new plotter object */

thePlot = new plotter();

/* Plot data */

thePlot.drawplot(x, y);

thePlot.waitForFigures();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(x);

MWArray.disposeArray(y);

if (thePlot != null)

thePlot.dispose();

}

}

}

The program does the following:

• Creates two arrays of double values, using MWNumericArray to represent
the data needed to plot the equation.

• Instantiates the plotter class as thePlot object, as shown:

thePlot = new plotter();

• Calls the drawplot method to plot the equation using the MATLAB
plot function, as shown:

thePlot.drawplot(x,y);

5-5

5 Sample Java Applications

• Uses a try-catch block to catch and handle any exceptions.

14 Compile the createplot application using javac. When entering
this command, ensure there are no spaces between pathnames in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\plotdemo.jar in the example below. cd
to your work directory. Ensure createplot.java is in your work directory

a. On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\plotdemo.jar createplot.java

b. On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/plotdemo.jar createplot.java

15 Run the application.

To run the createplot.class file, do one of the following:

On Windows, type

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\plotdemo.jar
createplot

On UNIX, type

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/plotdemo.jar
createplot

5-6

Plot Example

Note The supported JRE version is 1.6.0. To find out what JRE
you are using, refer to the output of 'version -java' in MATLAB
or refer to the jre.cfg file in matlabroot/sys/java/jre/arch
ormcrroot/sys/java/jre/arch.

The createplot program should display the output:

5-7

5 Sample Java Applications

Spectral Analysis Example
The purpose of the example is to show you the following:

• How to use MATLAB Builder for Java to create a component
(spectralanalysis) containing a class that has a private method that is
automatically encapsulated.

• How to access the component in a Java application (powerspect.java),
including use of the MWArray class hierarchy to represent data.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the application

The component spectralanalysis analyzes a signal and graphs the result.
The class, fourier, performs a Fast Fourier Transform (FFT) on an input data
array. A method of this class, computefft, returns the results of that FFT
as two output arrays — an array of frequency points and the power spectral
density. The second method, plotfft, graphs the returned data. These two
methods, computefft and plotfft, encapsulate MATLAB functions.

The MATLAB code for these two methods is in
computefft.m and plotfft.m, which can be found in
matlabroot\toolbox\javabuilder\Examples\SpectraExample\SpectraDemoComp.

computefft.m

function [fftData, freq, powerSpect] = ComputeFFT(data, interval)
% COMPUTEFFT Computes the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = COMPUTEFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% product.
% Copyright 2001-2007 The MathWorks, Inc.
if (isempty(data))

fftdata = [];
freq = [];

5-8

Spectral Analysis Example

powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftData = fft(data);
freq = (0:length(fftData)-1)/(length(fftData)*interval);
powerSpect = abs(fftData)/(sqrt(length(fftData)));

plotfft.m

function PlotFFT(fftData, freq, powerSpect)
%PLOTFFT Computes and plots the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = PLOTFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% product.
% Copyright 2001-2007 The MathWorks, Inc.
len = length(fftData);

if (len <= 0)
return;

end
plot(freq(1:floor(len/2)), powerSpect(1:floor(len/2)))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

Spectral Analysis Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

matlabroot\toolbox\javabuilder\Examples\SpectraExample

b. At the MATLAB command prompt, cd to the new SpectraExample
subdirectory in your work directory.

5-9

5 Sample Java Applications

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 7-2.

3 Write the M-code that you want to access.

This example uses computefft.m and plotfft.m, which are already in
your work directory in SpectraExample\SpectraDemoComp.

4 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

5 In MATLAB, Click File > New Deployment Project.

6 In the New Deployment Project dialog, select MATLAB Builder for Java
and Java Package.

7 Select spectralanalysis as the name of the project and click OK.

8 In the Deployment Tool, select spectralanalysis.class and right-click.
Select Rename and type fourier.

9 Select Generate Verbose Output.

10 Add the plotfft.m M-file to the project.

Note In this example, the application that uses the fourier class does not
need to call computefft directly. The computefft method is required only
by the plotfft method. Thus, when creating the component, you do not
need to add the computefft function, although doing so does no harm.

11 Save the project. Make note of the project directory because you will refer
to it later when you build the program that will use it.

12 Build the component.

13 Write source code for an application that accesses the component.

5-10

Spectral Analysis Example

The sample application for this example is in
SpectraExample\SpectraDemoJavaApp\powerspect.java.

The program listing is shown here.

powerspect.java

/* powerspect.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2007 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import spectralanalysis.*;

/*

* powerspect class computes and plots the power

* spectral density of an input signal.

*/

class powerspect

{

public static void main(String[] args)

{

double interval = 0.01; /* Sampling interval */

int nSamples = 1001; /* Number of samples */

MWNumericArray data = null; /* Stores input data */

Object[] result = null; /* Stores result */

fourier theFourier = null; /* Fourier class instance */

try

{

/*

* Construct input data as sin(2*PI*15*t) +

* sin(2*PI*40*t) plus a random signal.

* Duration = 10

* Sampling interval = 0.01

*/

5-11

5 Sample Java Applications

int[] dims = {1, nSamples};

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE,

MWComplexity.REAL);

for (int i = 1; i <= nSamples; i++)

{

double t = (i-1)*interval;

double x = Math.sin(2.0*Math.PI*15.0*t) +

Math.sin(2.0*Math.PI*40.0*t) +

Math.random();

data.set(i, x);

}

/* Create new fourier object */

theFourier = new fourier();

theFourier.waitForFigures();

/* Compute power spectral density and plot result */

result = theFourier.plotfft(3, data,

new Double(interval));

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(data);

MWArray.disposeArray(result);

if (theFourier != null)

theFourier.dispose();

}

}

}

5-12

Spectral Analysis Example

The program does the following:

• Constructs an input array with values representing a random signal
with two sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data, as shown:

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE, MWComplexity.REAL);

• Instantiates a fourier object

• Calls the plotfft method, which calls computeftt and plots the data

• Uses a try/catch block to handle exceptions

• Frees native resources using MWArray methods

14 Compile the powerspect.java application using javac. When entering
this command, ensure there are no spaces between pathnames in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\spectralanalysis.jar in the example
below.

a. Open a Command Prompt window and cd to the
matlabroot\spectralanalysis directory. cd to your work
directory. Ensure powerspect.java is in your work directory

b. On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\spectralanalysis.jar powerspect.java

c. On UNIX, execute the following command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/spectralanalysis.jar powerspect.java

Note For matlabroot substitute the MATLAB root directory on your
system. Type matlabroot to see this directory name.

5-13

5 Sample Java Applications

15 Run the application.

• On Windows, execute the powerspect class file as follows:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar
.\distrib\spectralanalysis.jar
powerspect

• On UNIX, execute the powerspect class file as follows:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/spectralanalysis.jar
powerspect
% where <Arch> = glux86 gluxa64 sol64

Note The supported JRE version is 1.6.0. To find out what JRE you are using,
refer to the output of 'version -java' in MATLAB or refer to the jre.cfg
file in matlabroot/sys/java/jre/arch ormcrroot/sys/java/jre/arch.

The powerspect program should display the output:

5-14

Spectral Analysis Example

5-15

5 Sample Java Applications

Matrix Math Example

In this section...

“Example Overview” on page 5-16

“MATLAB Functions to Be Encapsulated” on page 5-17

“Understanding the getfactor Program” on page 5-26

Example Overview
The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a component class.

• How to manually handle native memory management.

• How to access the component in a Java application (getfactor.java) by
instantiating Factor and using the MWArray class library to handle data
conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the MatrixMathDemoApp application

This example builds a Java component to perform matrix math. The example
creates a program that performs Cholesky, LU, and QR factorizations on a
simple tridiagonal matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

You supply the size of the matrix on the command line, and the program
constructs the matrix and performs the three factorizations. The original
matrix and the results are printed to standard output. You may optionally

5-16

Matrix Math Example

perform the calculations using a sparse matrix by specifying the string
"sparse" as the second parameter on the command line.

MATLAB Functions to Be Encapsulated
The following code defines the MATLAB functions used in the example:

cholesky.m

function [L] = cholesky(A)

%CHOLESKY Cholesky factorization of A.

% L = CHOLESKY(A) returns the Cholesky factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2007 The MathWorks, Inc.

L = chol(A);

ludecomp.m

function [L,U] = ludecomp(A)

%LUDECOMP LU factorization of A.

% [L,U] = LUDECOMP(A) returns the LU factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2007 The MathWorks, Inc.

[L,U] = lu(A);

qrdecomp.m

function [Q,R] = qrdecomp(A)

%QRDECOMP QR factorization of A.

% [Q,R] = QRDECOMP(A) returns the QR factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2007 The MathWorks, Inc.

5-17

5 Sample Java Applications

[Q,R] = qr(A);

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

matlabroot\toolbox\javabuilder\Examples\MatrixMathExample

b. At the MATLAB command prompt, cd to the new MatrixMathExample
subdirectory in your work directory.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 7-2.

3 Write the MATLAB functions as you would any MATLAB function.

The code for the cholesky, ludecomp, and qrdecomp functions is already in
your work directory in MatrixMathExample\MatrixMathDemoComp\.

4 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

5 In MATLAB, Click File > New Deployment Project.

6 In the New Deployment Project dialog, select MATLAB Builder for Java
and Java Package.

7 Select factormatrix as the name of the project and click OK.

8 In the Deployment Tool, select factormatrix.class and right-click. Select
Rename and type factor.

9 Select Generate Verbose Output.

10 Add the cholesky.m, ludecomp.m and qrdecomp.m M-files to the project.

5-18

Matrix Math Example

11 Save the project.

12 Build the component by clicking the build icon on the toolbar in Deployment
Tool.

13 Write source code for an application that accesses the component.

The sample application for this example is in
MatrixMathExample\MatrixMathDemoJavaApp\getfactor.java.

The program listing is shown here.

getfactor.java

/* getfactor.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2007 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import factormatrix.*;

/*

* getfactor class computes cholesky, LU, and QR

* factorizations of a finite difference matrix

* of order N. The value of N is passed on the

* command line. If a second command line arg

* is passed with the value of "sparse", then

* a sparse matrix is used.

*/

class getfactor

{

public static void main(String[] args)

{

MWNumericArray a = null; /* Stores matrix to factor */

Object[] result = null; /* Stores the result */

factor theFactor = null; /* Stores factor class instance */

5-19

5 Sample Java Applications

try

{

/* If no input, exit */

if (args.length == 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/* Convert input value */

int n = Integer.valueOf(args[0]).intValue();

if (n <= 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/*

* Allocate matrix. If second input is "sparse"

* allocate a sparse array

*/

int[] dims = {n, n};

if (args.length > 1 && args[1].equals("sparse"))

a = MWNumericArray.newSparse(dims[0], dims[1],n+2*(n-1), MWClassID.DOUBLE, MWComplexity.REAL);

else

a = MWNumericArray.newInstance(dims,MWClassID.DOUBLE, MWComplexity.REAL);

/* Set matrix values */

int[] index = {1, 1};

for (index[0] = 1; index[0] <= dims[0]; index[0]++)

{

for (index[1] = 1; index[1] <= dims[1]; index[1]++)

{

if (index[1] == index[0])

a.set(index, 2.0);

else if (index[1] == index[0]+1 || index[1] == index[0]-1)

5-20

Matrix Math Example

a.set(index, -1.0);

}

}

/* Create new factor object */

theFactor = new factor();

/* Print original matrix */

System.out.println("Original matrix:");

System.out.println(a);

/* Compute cholesky factorization and print results. */

result = theFactor.cholesky(1, a);

System.out.println("Cholesky factorization:");

System.out.println(result[0]);

MWArray.disposeArray(result);

/* Compute LU factorization and print results. */

result = theFactor.ludecomp(2, a);

System.out.println("LU factorization:");

System.out.println("L matrix:");

System.out.println(result[0]);

System.out.println("U matrix:");

System.out.println(result[1]);

MWArray.disposeArray(result);

/* Compute QR factorization and print results. */

result = theFactor.qrdecomp(2, a);

System.out.println("QR factorization:");

System.out.println("Q matrix:");

System.out.println(result[0]);

System.out.println("R matrix:");

System.out.println(result[1]);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

5-21

5 Sample Java Applications

finally

{

/* Free native resources */

MWArray.disposeArray(a);

MWArray.disposeArray(result);

if (theFactor != null)

theFactor.dispose();

}

}

}

The statement:

theFactor = new factor();

creates an instance of the class factor.

The following statements call the methods that encapsulate the MATLAB
functions:

result = theFactor.cholesky(1, a);
...
result = theFactor.ludecomp(2, a);
...
result = theFactor.qrdecomp(2, a);
...

14 Compile the getfactor application using javac. When entering this
command, ensure there are no spaces between pathnames in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\factormatrix.jar in the example
below.

cd to the matlabroot\work\factormatrix directory. Ensure
getfactor.java is in this directory

• On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\factormatrix.jar getfactor.java

5-22

Matrix Math Example

• On UNIX, execute the following command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/factormatrix.jar getfactor.java

15 Run the application.

Run getfactor using a nonsparse matrix

• On Windows, execute the getfactor class file as follows:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\factormatrix.jar
getfactor 4

• On UNIX, execute the getfactor class file as follows:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/factormatrix.jar
getfactor 4
% where <Arch> = glux86 gluxa64 sol64

Note The supported JRE version is 1.6.0. To find out what JRE you are using,
refer to the output of 'version -java' in MATLAB or refer to the jre.cfg file
in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

Output for the Matrix Math Example

Original matrix:
2 -1 0 0

-1 2 -1 0
0 -1 2 -1
0 0 -1 2

Cholesky factorization:
1.4142 -0.7071 0 0

5-23

5 Sample Java Applications

0 1.2247 -0.8165 0
0 0 1.1547 -0.8660
0 0 0 1.1180

LU factorization:
L matrix:

1.0000 0 0 0
-0.5000 1.0000 0 0

0 -0.6667 1.0000 0
0 0 -0.7500 1.0000

U matrix:
2.0000 -1.0000 0 0

0 1.5000 -1.0000 0
0 0 1.3333 -1.0000
0 0 0 1.2500

QR factorization:
Q matrix:

-0.8944 -0.3586 -0.1952 0.1826
0.4472 -0.7171 -0.3904 0.3651

0 0.5976 -0.5855 0.5477
0 0 0.6831 0.7303

R matrix:
-2.2361 1.7889 -0.4472 0

0 -1.6733 1.9124 -0.5976
0 0 -1.4639 1.9518
0 0 0 0.9129

To run the same program for a sparse matrix, use the same command and add
the string sparse to the command line:

java (... same arguments) getfactor 4 sparse

5-24

Matrix Math Example

Output for a Sparse Matrix

Original matrix:
(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4) 2

Cholesky factorization:
(1,1) 1.4142
(1,2) -0.7071
(2,2) 1.2247
(2,3) -0.8165
(3,3) 1.1547
(3,4) -0.8660
(4,4) 1.1180

LU factorization:
L matrix:

(1,1) 1.0000
(2,1) -0.5000
(2,2) 1.0000
(3,2) -0.6667
(3,3) 1.0000
(4,3) -0.7500
(4,4) 1.0000

U matrix:
(1,1) 2.0000
(1,2) -1.0000
(2,2) 1.5000

5-25

5 Sample Java Applications

(2,3) -1.0000
(3,3) 1.3333
(3,4) -1.0000
(4,4) 1.2500

QR factorization:
Q matrix:

(1,1) 0.8944
(2,1) -0.4472
(1,2) 0.3586
(2,2) 0.7171
(3,2) -0.5976
(1,3) 0.1952
(2,3) 0.3904
(3,3) 0.5855
(4,3) -0.6831
(1,4) 0.1826
(2,4) 0.3651
(3,4) 0.5477
(4,4) 0.7303

R matrix:
(1,1) 2.2361
(1,2) -1.7889
(2,2) 1.6733
(1,3) 0.4472
(2,3) -1.9124
(3,3) 1.4639
(2,4) 0.5976
(3,4) -1.9518
(4,4) 0.9129

Understanding the getfactor Program
The getfactor program takes one or two arguments from standard input.
The first argument is converted to the integer order of the test matrix. If the
string sparse is passed as the second argument, a sparse matrix is created

5-26

Matrix Math Example

to contain the test array. The Cholesky, LU, and QR factorizations are then
computed and the results are displayed to standard output.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls
the cholesky, ludecomp, and qrdecomp methods. This part is executed
inside of a try block. This is done so that if an exception occurs during
execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard
output to let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources
before exiting.

5-27

5 Sample Java Applications

Phonebook Example

In this section...

“ The makephone Function” on page 5-28

“Phonebook Example: Step-by-Step Procedure” on page 5-28

The makephone Function
The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

Note For complete reference information about the MWArray class hierarchy,
see the com.mathworks.toolbox.javabuilder package.

Phonebook Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB to your work
directory:

matlabroot\toolbox\javabuilder\Examples\PhoneExample

b. At the MATLAB command prompt, cd to the new PhoneExample
subdirectory in your work directory.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 7-2.

3 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

5-28

Phonebook Example

% The new field EXTERNAL is based on the PHONE field of the original.

% This file is used as an example for MATLAB

% Builder for Java.

% Copyright 2006-2007 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work directory in
PhoneExample\PhoneDemoComp\makephone.m.

4 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

5 In MATLAB, Click File > New Deployment Project.

6 In the New Deployment Project dialog, select MATLAB Builder for Java
and Java Package.

7 Select phonebookdemo as the name of the project and click OK.

8 In the Deployment Tool, select phonebookdemo.class and right-click.
Select Rename and type phonebook.

9 Select Generate Verbose Output.

10 Add the makephone.m file to the project

11 Save the project.

12 Build the component.

13 Write source code for an application that accesses the component.

5-29

5 Sample Java Applications

The sample application for this example is in
matlabroot\toolbox\javabuilder\Examples\PhoneExample\
PhoneDemoJavaApp\getphone.java.

The program defines a structure array containing names and phone
numbers, modifies it using a MATLAB function, and displays the resulting
structure array.

5-30

Phonebook Example

The program listing is shown here.

getphone.java

/* getphone.java

% This file is used as an example for MATLAB

% Builder for Java.

*

* Copyright 2001-2007 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import phonebookdemo.*;

/*

* getphone class demonstrates the use of the MWStructArray class

*/

class getphone

{

public static void main(String[] args)

{

phonebook thePhonebook = null; /* Stores magic class instance */

MWStructArray friends = null; /* Sample input data */

Object[] result = null; /* Stores the result */

MWStructArray book = null; /* Output data extracted from result */

try

{

/* Create new magic object */

thePhonebook = new phonebook();

/* Create an MWStructArray with two fields */

String[] myFieldNames = {"name", "phone"};

friends = new MWStructArray(2,2,myFieldNames);

/* Populate struct with some sample data --- friends and phone numbers */

friends.set("name",1,new MWCharArray("Jordan Robert"));

friends.set("phone",1,3386);

5-31

5 Sample Java Applications

friends.set("name",2,new MWCharArray("Mary Smith"));

friends.set("phone",2,3912);

friends.set("name",3,new MWCharArray("Stacy Flora"));

friends.set("phone",3,3238);

friends.set("name",4,new MWCharArray("Harry Alpert"));

friends.set("phone",4,3077);

/* Show some of the sample data */

System.out.println("Friends: ");

System.out.println(friends.toString());

/* Pass it to an M-function that determines external phone number */

result = thePhonebook.makephone(1, friends);

book = (MWStructArray)result[0];

System.out.println("Result: ");

System.out.println(book.toString());

/* Extract some data from the returned structure */

System.out.println("Result record 2:");

System.out.println(book.getField("name",2));

System.out.println(book.getField("phone",2));

System.out.println(book.getField("external",2));

/* Print the entire result structure using the helper function below */

System.out.println("");

System.out.println("Entire structure:");

dispStruct(book);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(result);

MWArray.disposeArray(friends);

MWArray.disposeArray(book);

if (thePhonebook != null)

5-32

Phonebook Example

thePhonebook.dispose();

}

}

public static void dispStruct(MWStructArray arr) {

System.out.println("Number of Elements: " + arr.numberOfElements());

//int numDims = arr.numberOfDimensions();

int[] dims = arr.getDimensions();

System.out.print("Dimensions: " + dims[0]);

for (int i = 1; i < dims.length; i++)

{

System.out.print("-by-" + dims[i]);

}

System.out.println("");

System.out.println("Number of Fields: " + arr.numberOfFields());

System.out.println("Standard MATLAB view:");

System.out.println(arr.toString());

System.out.println("Walking structure:");

java.lang.String[] fieldNames = arr.fieldNames();

for (int element = 1; element <= arr.numberOfElements(); element++) {

System.out.println("Element " + element);

for (int field = 0; field < arr.numberOfFields(); field++) {

MWArray fieldVal = arr.getField(fieldNames[field], element);

/* Recursively print substructures, give string display of other classes */

if (fieldVal instanceof MWStructArray)

{

System.out.println(" " + fieldNames[field] + ": nested structure:");

System.out.println("+++ Begin of \"" + fieldNames[field] + "\" nested structure");

dispStruct((MWStructArray)fieldVal);

System.out.println("+++ End of \"" + fieldNames[field] + "\" nested structure");

} else {

System.out.print(" " + fieldNames[field] + ": ");

System.out.println(fieldVal.toString());

}

}

}

}

}

The program does the following:

5-33

5 Sample Java Applications

• Creates a structure array, using MWStructArray to represent the
example phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy
of the structure by adding an additional field, as shown:
result = thePhonebook.makephone(1, friends);

• Utilizes a try-catch block to catch and handle any exceptions.

14 Compile the getphone application using javac. When entering this
command, ensure there are no spaces between pathnames in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\phonebookdemo.jar in the example
below. cd to your work directory. Ensure getphone.java is in your work
directory

a. On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\phonebookdemo.jar getphone.java

b. On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/phonebookdemo.jar getphone.java

15 Run the application.

To run the getphone.class file, do one of the following:

On Windows, type

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\phonebookdemo.jar
getphone

5-34

Phonebook Example

On UNIX, type

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/phonebookdemo.jar
getphone

Note The supported JRE version is 1.6.0. To find out what JRE you are
using, refer to the output of 'version -java' in MATLAB or refer to the
jre.cfg file in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

The getphone program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:
Element 1

5-35

5 Sample Java Applications

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

5-36

Buffered Image Creation Example

Buffered Image Creation Example
This example demonstrates how to create a buffered image from a graphical
representation of the surf(peaks) function in MATLAB.

The hardcopy function is used to output the figure window as an array:

function w = getSurfsFigure
f = figure;
set(f,'Visible', 'off');

f = surf(peaks);
w = hardcopy(gcf,'-dOpenGL','-r0');

end

Note There is minimal error handling in this example. Integrate this code
with whatever logging is currently in place for your Java layer.

Note Be aware that hardcopy is currently an undocumented function and
subject to change.

1 Create a Java object from the function above by doing the following:

a Start the Deployment Tool by entering deploytool from the MATLAB
Command Prompt.

b Select File > New > Deployment Project from the MATLAB interface.

c Select a MATLAB Builder for Java Project and Java Package, then
give the project a name and location. Click OK.

d Click Settings in the Deployment Tool and enter the package name as
com.mathworks.deploy.peaks. Click OK.

e In the Deployment Tool, change the project_nameclass name to Peaks
by right-clicking on the class folder and selecting Rename.

5-37

5 Sample Java Applications

f Add the function getSurfsFigure.m to the Peaks class by dragging the
function from the MATLAB Current Directory browser to the Peaks
class folder in the Deployment Tool.

g Click the Build icon in the Deployment Tool toolbar and build your Java
object. Be sure to select the Include MCR build option.

2 From the output distrib directory of your build, copy peaks.jar to the
directory where you are building your application.

3 Create the SurfPeaks.java code:

//imported classes from JRE
import java.awt.Image;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.ImageIcon;

//imported classes from javabuilder.jar
import com.mathworks.toolbox.javabuilder.Images;
import com.mathworks.toolbox.javabuilder.MWArray;
import com.mathworks.toolbox.javabuilder.MWNumericArray;
import com.mathworks.toolbox.javabuilder.MWException;

//Import for the Deployment Project peaks.jar
import com.mathworks.deploy.peaks.Peaks;

//The Goal of this class is to show how you would deal with
// static images coming from a java deployment of a matlab figure.
//This can be run as a stand alone java application.
//
//The matlab function being deployed is surf(peaks).
//The hardcopy function is used to
// output the figure window as an array.
//M Code:
//**
// function w = getSurfsFigure
// f = figure;
// surf(peaks);
// w = hardcopy(gcf,'-dOpenGL','-r0');
// close(f);

5-38

Buffered Image Creation Example

// end
//**
//
//For this example you must have the deployment project
// jar and the javabuilder.jar on your classpath.
//
//Note:
//For this example there is minimal error handling.
//Typically you would want to integrate this with whatever
// logging is currently in place for your java layer.
public class SurfPeaks
{

//This initializes and executes the JFrame.
public static void main(String args[])
{

ImageIcon icon = new ImageIcon(getSurfImage());
JLabel label = new JLabel(icon);
JFrame frame = new JFrame();
frame.setSize(icon.getIconWidth(),icon.getIconHeight());
frame.setContentPane(label);
frame.setVisible(true);

}

//This method is basically our "business logic" method.
//It is responsible for instantiating our Matlab deployment,
//passing in any needed inputs, and dealing with any outputs.
//In this example we have no inputs, and the only output is the
//figure in hardcopy format (three dimensional MWNumericArray)
private static Image getSurfImage()
{

try
{

//Our deployment uses native resources and
//should be disposed of as soon as possible.
Peaks matlabModel = new Peaks();
try
{

//If we had any inputs to our method
//they would be passed in here.
Object[] results = matlabModel.getSurfsFigure(1);

5-39

5 Sample Java Applications

//This array uses native resources and
//should be disposed of as soon as possible.
MWArray mwArray = (MWArray)results[0];
try
{

//Since we want this method to return only
// non matlab data
// we convert the matlab figure to a
// buffered image and return it.
return Images.renderArrayData

((MWNumericArray)mwArray);
}
finally
{

MWArray.disposeArray(mwArray);
}

}
finally
{

matlabModel.dispose();
}

}
catch(MWException mwe)
{

mwe.printStackTrace();
return null;

}
}

}

4 Compile the program using javac and the following command:

javac -classpath javabuilder.jar;peaks.jar SurfPeaks.java

Ensure that javabuilder.jar and peaks.jar (compiled in an earlier step)
are both in the directory you compile from (or define their full paths).

5-40

Buffered Image Creation Example

5 Run SurfPeaks.class using the following java command. Ensure that
javabuilder.jar and peaks.jar (compiled in an earlier step) are both in
the directory you compiled in (or define their full paths).

java -classpath javabuilder.jar;peaks.jar;. SurfPeaks

6 The following Surf Peaks graphic should open:

5-41

5 Sample Java Applications

Optimization Example

In this section...

“About This Example” on page 5-42

“The OptimDemo Component” on page 5-42

“Optimization Example: Step-by-Step Procedure” on page 5-43

About This Example
This example shows how to:

• Use MATLAB Builder for Java to create a component (OptimDemo) that
applies MATLAB optimization routines to objective functions implemented
as Java objects.

• Access the component in a Java application (PerformOptim.java),
including use of the MWJavaObjectRef class to create a reference to a Java
object (BananaFunction.java) and pass it to the component.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder Javadoc package
in the MATLAB Help or on the Web.

• Build and run the application.

The OptimDemo Component
The component OptimDemo finds a local minimum of an objective function
and returns the minimal location and value. The component uses the
MATLAB optimization function fminsearch, and this example optimizes the
Rosenbrock banana function used in the fminsearch documentation. The
class, Optimizer, performs an unconstrained nonlinear optimization on an
objective function implemented as a Java object. A method of this class,
doOptim, accepts an initial guess and Java object that implements the
objective function, and returns the location and value of a local minimum.
The second method, displayObj, is a debugging tool that lists the
characteristics of a Java object. These two methods, doOptim and

5-42

Optimization Example

displayObj, encapsulate MATLAB functions. The MATLAB code for these
two methods is in doOptim.m and displayObj.m, which can be found in
matlabroot\toolbox\javabuilder\Examples\ObjectRefExample\ObjectRefDemoComp.

Optimization Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following directory that ships
with MATLAB to your work directory:
matlabroot\toolbox\javabuilder\Examples\ObjectRefExample

b At the MATLAB command prompt, cd to the new ObjectRefExample
subdirectory in your work directory.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 7-2.

3 Write the M-code that you want to access. This example uses doOptim.m
and displayObj.m, which are already in your work directory in
ObjectRefExample\ObjectRefDemoComp.

4 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

5 In MATLAB, Click File > New Deployment Project.

6 In the New Deployment Project dialog, select MATLAB Builder for Java
and Java Package.

7 Select OptimDemo as the name of the project and click OK.

8 In the Deployment Tool, select OptimDemo.class and right-click. Select
Rename and type Optimizer.

9 Select Generate Verbose Output.

10 Add the doOptim.m and displayObj.m M-files to the project.

5-43

5 Sample Java Applications

11 Save the project. Make note of the project directory because you will refer
to it later when you build the program that will use it.

12 Build the component.

13 Write source code for a class that implements an object function
to optimize. The sample application for this example is in
ObjectRefExample\ObjectRefDemoJavaApp\BananaFunction.java. The
program listing is shown here:

STOPSTOP BananaFunction.java

The class implements the Rosenbrock banana function described in the
fminsearch documentation.

14 Write source code for an application that accesses the
component. The sample application for this example is in
ObjectRefExample\ObjectRefDemoJavaApp\PerformOptim.java. The
program listing is shown here:

STOPSTOP PerformOptim.java

The program does the following:

• Instantiates an object of the BananaFunction class above to be optimized.

• Creates an MWJavaObjectRef that references the BananaFunction object,
as shown: origRef = new MWJavaObjectRef(objectiveFunction);

• Instantiates an Optimizer object

• Calls the displayObj method to verify that the Java object is being
passed correctly

• Calls the doOptim method, which uses fminsearch to find a local
minimum of the objective function

• Uses a try/catch block to handle exceptions

• Frees native resources using MWArray methods

15 Compile the PerformOptim.java application and BananaFunction.java
helper class using javac. When entering this command, ensure there
are no spaces between pathnames in the matlabroot argument. For

5-44

Optimization Example

example, there should be no space between javabuilder.jar; and
.\distrib\OptimDemo.jar in the example below.

a Open a Command Prompt window and cd to the
matlabroot\work\ObjectRefExample directory.

b Compile the application according to which operating system you are
running on:

• On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\OptimDemo.jar BananaFunction.java
javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\OptimDemo.jar PerformOptim.java

• On UNIX, execute the following command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar BananaFunction.java
javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar PerformOptim.java

16 Execute the PerformOptim class file as follows:

• On Windows:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar
.\distrib\OptimDemo.jar
PerformOptim

• On UNIX:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar

5-45

5 Sample Java Applications

PerformOptim

Note Valid architectures on UNIX are glnx86, glnxa64, and sol64.

Note The supported JRE version is 1.6.0. To find out what JRE
you are using, refer to the output of version -java in MATLAB
or refer to the jre.cfg file in matlabroot/sys/java/jre/arch
ormcrroot/sys/java/jre/arch.

When run successfully, the PerformOptim program should display the
following output:

Using x0 =
-1.2000 1.0000

** Properties of Java object **

h =

BananaFunction@1766806

className =

BananaFunction

Name Size Bytes Class Attributes

h 1x1 BananaFunction

Methods for class BananaFunction:

5-46

Optimization Example

BananaFunction getClass notifyAll
equals hashCode toString
evaluateFunction notify wait

** Finished DISPLAYOBJ ******************************

** Performing unconstrained nonlinear optimization **

directEval =

24.2000

wrapperEval =

24.2000

x =

1.0000 1.0000

fval =

8.1777e-10

Optimization successful
** Finished DOOPTIM *********************************
Location of minimum:
1.0000 1.0000
Function value at minimum:
8.1777e-10

5-47

5 Sample Java Applications

5-48

6

Deploying a Java
Component Over the Web

Creating a Deployable Web
Application (p. 6-2)

Deploying a simple Web application
with Java Builder

Delivering Interactive Graphics
Over the Web with WebFigures
(p. 6-9)

Provide end users with the ability to
interactively manipulate MATLAB
graphics over the Web

Creating Scalable Web Applications
With RMI (p. 6-26)

Enable components to start in
separate processes, creating scalable
Web applications with Java’s RMI
technology.

6 Deploying a Java Component Over the Web

Creating a Deployable Web Application

In this section...

“Example Overview” on page 6-2

“Before You Begin” on page 6-2

“Download the Demo Files” on page 6-3

“Build Your Java Component” on page 6-4

“Compile Your Java Code” on page 6-5

“Generating the Web Archive (WAR) File ” on page 6-5

“Running the Web Deployment Demo” on page 6-6

“Using the Web Application” on page 6-6

Example Overview
This example demonstrates how to display a plot created by a Java Servlet
calling a component created with Java Builder over a Web interface. This
example uses MATLAB varargin and varargout for optional input and
output to the varargexample.m function. For more information about
varargin and varargout, see “How Does MATLAB Builder for Java Handle
Data?” on page 2-5

Before You Begin

• “Ensure You Have the Required Products” on page 6-2

• “Ensure Your Web Server is Java Compliant” on page 6-3

• “Install the javabuilder.jar Library” on page 6-3
This section describes what you need to know and do before you create the
Web deployment example.

Ensure You Have the Required Products
The following products must be installed at their recommended release levels.

6-2

Creating a Deployable Web Application

MATLAB, MATLAB Compiler, MATLAB Builder for Java. This example
was tested with version R2007b.

Java Development Kit (JDK). Ensure you have Sun JDK v1.6.0 installed on
your system. You can download it from Sun Microsystems, Inc.

Ensure Your Web Server is Java Compliant
In order to run this example, your Web server must be capable of running
accepted Java frameworks like J2EE. Running the WebFigures demo
(“Delivering Interactive Graphics Over the Web with WebFigures” on page
6-9) also requires the ability to run Servlets in WARs (Web Archives).

Install the javabuilder.jar Library
Ensure that the javabuilder.jar library
(matlabroot/toolbox/javabuilder/jar/javabuilder.jar) has been
installed into your Web server’s common library directory.

Download the Demo Files
Download the demo files from MATLAB Central. Search on the keyword
java_web_vararg_demo.

Contents of the Demo Files
The demo files contain the following three directories:

• mcode — Contains all of the MATLAB source code.

• JavaCode — Contains the required Java files and libraries.

• compile — Contains some helpful MATLAB functions to compile and clean
up the demo.

6-3

http://java.sun.com
http://www.mathworks.com/matlabcentral/?BB=1

6 Deploying a Java Component Over the Web

Note As an alternative to compiling the demo code manually and
creating the application WAR (Web Archive) manually, you can run
compileVarArgServletDemo.m in the compile directory. If you choose this
option and wish to change the locations of the output files, edit the values
in getVarArgServletDemoSettings.m.

If you choose to run compileVarArgServletDemo.m, consult the readme file
in the download for additional information and then skip to “Running the
Web Deployment Demo” on page 6-6 in this procedure.

Build Your Java Component
Build your Java component by compiling your code into a deployable Java
component .jar file.

Note For a more detailed explanation of building a Java component,
including further details on setting up your Java environment, the src
and distrib directories, and other information, see Getting Started in the
MATLAB Builder for Java User’s Guide documentation.

1 Start deploytool from the MATLAB command prompt.

2 Select New Project > MATLAB Builder for Java Project.

3 Specify the project name as vararg_java and click OK.

4 In the Deployment Tool, right-click on vararg_javaclass and select Add
File.

5 Using MATLAB’s Current Directory Browser, navigate to the demo
directory mcode and add the varargexample.m M-file to the class
vararg_javaclass by dragging it to the vararg_javaclass folder in the
Deployment Tool GUI.

6-4

Creating a Deployable Web Application

6 Click the Build icon on the Deployment Tool toolbar to build your project,
creating vararg_java.jar in the vararg_java distrib output directory.

Compile Your Java Code
Use javac to compile the Java source file VarArgServletClass.java from
demo directory JavaCode\src\VarArg.

javac.exe should be located in the bin directory of your JDK installation.

Ensure your classpath is set to include:

• javabuilder.jar (shipped with MATLAB Builder for Java)

• servlet-api.jar (in the demo directory JavaCode\lib)

For more details about using javac, see the Sun Microsystems, Inc. Web site
and Chapter 1, “Getting Started” in the MATLAB Builder for Java User’s
Guide documentation.

Generating the Web Archive (WAR) File
Web Archive or WAR files are a type of Java Archive used to deploy J2EE and
JSP Servlets. To run this example you will need to use the jar command
to generate the final WAR file that runs the application. To do this, follow
these steps:

1 Copy the JAR file created using MATLAB Builder for Java into the
JavaCode\build\WEB-INF\lib demo directory.

2 Copy the compiled Java class to the JavaCode\build\WEB-INF\classes
demo directory.

3 Use the jar command to generate the final WAR as follows:

jar cf VarArgServlet.war -C build .

Caution Don’t omit the . parameter above, which denotes current
working directory.

6-5

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/javac.html.

6 Deploying a Java Component Over the Web

For more information about the jar command, refer to the Sun
Microsystems, Inc. Web site.

Running the Web Deployment Demo
When you’re ready to run the application, do the following:

1 Install the VarArgServlet.war file into your Web server’s webapps
directory.

2 Run the application by entering
http://localhost:port_number/VarArgServlet in
the address field of your Web browser where port_number is the port that
your Web server is configured to use (usually 8080).

Using the Web Application
To use the application, do the following on the
http://localhost/VarArgServlet Web page:

6-6

http://java.sun.com/docs/books/tutorial/deployment/jar/basicsindex.html

Creating a Deployable Web Application

1 Enter any amount of numbers to plot in the Data to Plot field.

2 Select Line Color and Border Color using the Optional Input
drop-down boxes. Note that these optional inputs are passed as varargin
to the compiled M-code.

3 Select additional information you want to output, such as mean and
standard deviation, by selecting a radio button in the Optional Output
area. Note that these optional outputs are set as varargout from the
compiled M-code.

4 Click Display Plot. Example output is shown below using the Mean
optional output.

6-7

6 Deploying a Java Component Over the Web

6-8

Delivering Interactive Graphics Over the Web with WebFigures

Delivering Interactive Graphics Over the Web with
WebFigures

In this section...

“Before You Begin” on page 6-9

“Download the Example Files” on page 6-9

“The WebFigures Feature” on page 6-9

“Preparing to Implement WebFigures” on page 6-10

“Implementing WebFigures” on page 6-16

“End-User Interaction with WebFigures” on page 6-24

Before You Begin
See the VarArg Web demo section “Before You Begin” on page 6-2 for
information on properly setting up your Java environment before you run
the example in this section.

Download the Example Files
You will need several files to run the example in this section. Download them
from MATLAB Central. Search on the keyword java_web_figures_demo

The WebFigures Feature
You can provide interactive Web graphics using the WebFigures feature of
Java Builder. WebFigures provides thin client delivery of interactive Web
graphics through a single Web application server running a single JVM on a
single physical machine.

To implement WebFigures, you utilize the Java WebFigure class package. This
class encapsulates an individual figure and is a serializable, data-semantics
class that can be attached to the following context scopes within J2EE:

• Application

• Page

6-9

http://www.mathworks.com/matlabcentral/?BB=1

6 Deploying a Java Component Over the Web

• Session

Preparing to Implement WebFigures
To prepare to implement WebFigures, perform the following steps:

1 “Modifying the WebFigure Creation Code” on page 6-10

2 “Modify the Code to Attach the WebFigure to the J2EE Context Scope”
on page 6-11

3 “Embed the WebFigure as Part of the Response HTML Page” on page 6-12

4 “Enable User Interaction by Creating Mapping in a Web Deployment
Descriptor File” on page 6-15

5 “Enable Disposal of the WebFigure” on page 6-15

Modifying the WebFigure Creation Code
Add the code that will allow the WebFigure’s creation by doing the following:

1 Add the webfigure statement to your existing M code. The syntax of the
statement is:

webfigure_handle = webfigure(figure_handle);

When webfigure is executed, a “snapshot” or picture is taken of an open
MATLAB figure. The example code below opens a new figure window, plots
some data in the window, creates the WebFigure object, and closes the
figure. Note the WebFigure is valid even after the MATLAB figure has
been closed.

function w = getplot
f = figure;
plot(1:10);
w = webfigure(f);
close(f);

2 Add the reference to the WebFigure object in your MWArray interface Java
code so it can be received by the controller Servlet or Scriptlet as follows:

6-10

Delivering Interactive Graphics Over the Web with WebFigures

// generate the plot
Object[] results = matlabModel.getplot(1);

//unpack the WebFigure
MWJavaObjectRef ref = (MWJavaObjectRef)results[0];
WebFigure f = (WebFigure)ref.get();

When this code is run, the WebFigure is created and is ready for further
manipulation by the Java application’s controller code.

Modify the Code to Attach the WebFigure to the J2EE Context
Scope
Change the Java application’s controller code to allow the figure to be
accessible to the view layer. You do this by modifying the controller code so
the figure is attached to a J2EE context scope, such as the session. Attaching
to a session assumes that the figure will be interacted with by one user only.
Attach the figure to a broader context scope, if needed, depending on the scope
of your user audience. Alternate scopes are page or application.

Note For more information on Web-specific terms and concepts such as
context scopes, see the Sun Microsystems, Inc. Web site.

Attach the figure to a context scope using the following syntax:

context_scope_object.setAttribute(name,
webfigure_object_variable);

For example, to attach to the session context scope from a Servlet’s service
method, the following statement should be added to your controller code:

request.getsession().setAttribute("UserPlot", f);

When this statement is run, the WebFigure will have a name (UserPlot)
which will be referred to by the view layer in the next step.

6-11

http://java.sun.com/j2ee/1.4/docs/

6 Deploying a Java Component Over the Web

Embed the WebFigure as Part of the Response HTML Page
To enable the user to interact with the figure, it must be embedded in an
HTML page. To do this, allow the controller code to delegate displaying a
response to the view layer.

Two methods are available for embedding the WebFigure, depending on
whether the view layer is implemented as either a Servlet or a JSP page.

See the following table for a listing of the required and optional parameters
used in the constructor and the getHTMLEmbedString method.

Parameter Definition

WebFigures constructor parameters

root URL where the WebFigures servlet is mapped in
the deployment descriptor (web.xml)

servletContext Reference to the servlet context for the current
servlet

getHTMLEmbedString method parameters

webfigure Handle to the webfigure being displayed

name The attribute name used to store the WebFigure
object

scope The scope where the attribute is set; possible
values can be session, page, or application

width The width of the figure window in the HTML page
– can be specified in pixels or as a percentage of
the width of the containing HTML element

Note If a value is not provided (for JSP) or if it
is null (for Servlet), the MATLAB figure window
dimensions will be used when rendering the figure
on the Web page.

6-12

Delivering Interactive Graphics Over the Web with WebFigures

Parameter Definition

height The height of the figure window in the HTML page
– can be specified in pixels or as a percentage of
the height of the containing HTML element

Note If a value is not provided (for JSP) or if it
is null (for Servlet), the MATLAB figure window
dimensions will be used when rendering the figure
on the Web page.

style Element-level CSS properties (from the style tag)
used to customize the look of the figure interface
on the HTML page

Embedding from a Servlet. To embed from a servlet, create an instance
of the class WebFigures using the servlet API. Supply an argument to the
WebFigures constructor that equates to the URL where the WebFigures
servlet is mapped.

// The argument to the WebFigures constructor is the URL where the
// WebFigures servlet is mapped (relative to the Web application

and Servlet context)
WebFigures webFigures = new WebFigures("WebFigures", f,

getServletContext());
responseWriter.print(webFigures.getHtmlEmbedString(wb, name,

scope, width,
height, options));

The following graphic depicts an AJAX client, running WebFigures,
communicating with a view layer implemented as a Servlet:

6-13

6 Deploying a Java Component Over the Web

Client Browser Web Server

Web Figure Window

HTML page

Web Application

AJAX

Client

Web Figures

Servlet

Embedding from a JSP Page. To embed from the JSP page, you must
import the webfigures tag library and use the web-figure tag. Do this by
adding the tags displayed in the bolded lines in the following example:

<%@ taglib prefix="wf" uri="/WEB-INF/webfigures.tld" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head><title>MATLAB WebFigures Demo</title></head>

<body>

<table border=0 cellspacing=2 cellpadding=0 style="width:100%;height:100%">

<tr><td>Use the controls below to interact with the surface plot.</td></tr>

<tr><td height=100%>

<wf:web-figure name="UserPlot" scope="session" root="WebFigures"

width="100%" height="100%"/>

<td></tr>

</table>

</body>

</html>

By default, the following client settings have these values when the
WebFigure is displayed for the first time:

• zoom-to-fit is true — The figure is automatically resized to fit the entire
view port when the embedded HTML element is resized.

6-14

Delivering Interactive Graphics Over the Web with WebFigures

• camera angle is the same as in the original MATLAB figure when the
WebFigure was created.

Enable User Interaction by Creating Mapping in a Web
Deployment Descriptor File
Users send requests from the client to the WebFigures Servlet, which
must be mapped to a URL in the Web application using WebFigures.
Do this by creating or customizing the Web deployment descriptor file
/WEB-INF/web.xml.

Use the following example template of the descriptor file, or use a similar
template provided with your IDE:

<web-app>

<servlet>

<servlet-name>WebFigures</servlet-name>

<servlet-class>

com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>WebFigures</servlet-name>

<url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

</web-app>

The url-pattern tag specifies that all URLs in /Webfigures are to be mapped
to the WebFiguresServlet (accomplished by the * wildcard character).

Note The WebFiguresServlet does not have to be mapped onto
/WebFigures. Choose the url-pattern most appropriate for your application.

Enable Disposal of the WebFigure
To free up resources, you must provide a method to dispose of the created
WebFigure. Do this by binding the WebFigure to the lifetime of an HTTP
session context so that it will automatically be disposed of when the session

6-15

6 Deploying a Java Component Over the Web

expires (via timeout, server shutdown, or explicit invalidation in Controller
logic).

This is performed through use of a new utility class,
com.mathworks.toolbox.javabuilder.web.MWHttpSessionBinder.

For example:

// bind the figure's lifetime to the session

sessionContext.setAttribute("UserPlotBinder", new MWHttpSessionBinder(figure));

This method ensures that dispose will be called on the given object when the
attribute UserPlotBinder is unbound from the session. When the session
expires, all its attributes are unbound. To disable this behavior after having
bound the figure to the session, the following code may be used:

MWHttpSessionBinder binder =

(MWHttpSessionBinder)sessionContext.getAttribute("UserPlotBinder");

binder.setObject(null);

sessionContext.removeAttribute("UserPlotBinder");

Setting the binder’s object property to null ensures that dispose will not be
called when removeAttribute is called.

Implementing WebFigures
You are now ready to compile and run your WebFigures application. Ensure
you have the following at hand:

• From the files prepared in “Preparing to Implement WebFigures” on page
6-10:

- M-code (getplot.m)

- A controller Servlet (ModelRunnerServlet.java) or A JSP page
(response.jsp)

- An HTML page that serves as the entry point to the application
(index.html)

6-16

Delivering Interactive Graphics Over the Web with WebFigures

- The Web descriptor file, web.xml

• Provided as part of MATLAB Builder for Java WebFigures:

- WebFigures Servlet
(com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet)
included in javabuilder.jar.

- The WebFigures JSP tag library descriptor (webfigures.tld)

Perform the following steps to compile and run your WebFigures application.

1 “Compile the M-Code Into a Java Object” on page 6-17

2 “Write Code to Instantiate the Java Object and Create the WebFigure”
on page 6-18

3 “Adapt the HTML to Display the WebFigure” on page 6-22

4 “Add Servlet Mapping for the WebFiguresServlet” on page 6-23

5 “Add the index.html to Create the Point of Entry for the Application” on
page 6-24

Compile the M-Code Into a Java Object
Create the Java object from the plot function example outlined in “Modifying
the WebFigure Creation Code” on page 6-10 by doing the following:

1 Start deploytool from the MATLAB command prompt.

2 Select File > New Deployment Project.

3 In the next screen, select MATLAB Builder for Java in the left pane and
Java Package in the right pane.

4 Enter any name for the project in the Name field, verify or change the
Location, and click OK.

5 Click Settings. In the Package Name field, specify the package name
as com_mathworks_examples_plot.

6-17

6 Deploying a Java Component Over the Web

6 In Deployment Tool, right-click the project_nameclass folder name, select
Rename Class and enter the name plotter.

7 Add the file getplot.m to the plotter class by dragging the file from the
MATLAB Current Directory browser to the class folder in the Deployment
Tool.

8 Click the Build icon on the Deployment Tool toolbar to build your project,
creating plot.jar in the distrib output directory.

9 Copy the plot.jar files to your Web application directory tree
WEB-INF/lib/.

Write Code to Instantiate the Java Object and Create the
WebFigure
Add code to the ModelRunnerServlet.java controller Servlet to create the
Java object and the WebFigure in real-time.

1 Add the following code to the super.init() method to instantiate the
object:

try {

// create a new plotter object

matlabModel = new plotter();

}

catch (MWException mcrInitError) {

mcrInitError.printStackTrace();

}

2 Add the following code to the doGet() method to create the WebFigure
object

// find the plotter object associated with this session

WebFigure userPlot = (WebFigure)session.getAttribute("UserPlot");

// if this is the first time doGet has been called for this session,

// create the plot and WebFigure object

if (null == userPlot) {

try {

6-18

Delivering Interactive Graphics Over the Web with WebFigures

// generate the plot

Object[] results = matlabModel.getplot(/* nargout = */ 1);

try {

// unpack the WebFigure

MWJavaObjectRef ref = (MWJavaObjectRef)results[0];

userPlot = (WebFigure)ref.get();

// store the figure in the session context

session.setAttribute("UserPlot", userPlot);

// bind the figure's lifetime to the session

session.setAttribute("UserPlotBinder",

new MWHttpSessionBinder(userPlot));

}

finally {

// free MCR-related resources held by the results

MWArray.disposeArray(results);

}

}

catch (MWException getplotError) {

getplotError.printStackTrace();

}

}

The complete ModelRunnerServlet.java program should look like this:

// imported classes from JRE

import java.io.IOException;

// imported classes from servlet-api.jar

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;

import javax.servlet.ServletConfig;

import javax.servlet.ServletContext;

import javax.servlet.RequestDispatcher;

6-19

6 Deploying a Java Component Over the Web

// imported classes from javabuilder.jar

import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;

import com.mathworks.toolbox.javabuilder.MWJavaObjectRef;

import com.mathworks.toolbox.javabuilder.MWException;

import com.mathworks.toolbox.javabuilder.MWArray;

import com.mathworks.toolbox.javabuilder.web.MWHttpSessionBinder;

// imported classes from plot.jar

import com.mathworks.examples.plot.Plotter;

public class ModelRunnerServlet extends HttpServlet

{

private plotter matlabModel = null;

public void init(ServletConfig config) throws ServletException

{

super.init(config);

try {

// create a new plotter object

matlabModel = new plotter();

}

catch (MWException mcrInitError) {

mcrInitError.printStackTrace();

}

}

public void destroy()

{

super.destroy();

// free MCR-related resources

matlabModel.dispose();

}

protected void doGet(final HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

HttpSession session = request.getSession();

ServletContext servletContext = session.getServletContext();

6-20

Delivering Interactive Graphics Over the Web with WebFigures

// find the plotter object associated with this session

WebFigure userPlot = (WebFigure)session.getAttribute("UserPlot");

// if this is the first time doGet has been called for this session,

// create the plot and WebFigure object

if (null == userPlot) {

try {

// generate the plot

Object[] results = matlabModel.getplot(/* nargout = */ 1);

try {

// unpack the WebFigure

MWJavaObjectRef ref = (MWJavaObjectRef)results[0];

userPlot = (WebFigure)ref.get();

// store the figure in the session context

session.setAttribute("UserPlot", userPlot);

// bind the figure's lifetime to the session

session.setAttribute("UserPlotBinder",

new MWHttpSessionBinder(userPlot));

}

finally {

// free MCR-related resources held by the results

MWArray.disposeArray(results);

}

}

catch (MWException getplotError) {

getplotError.printStackTrace();

}

}

// forward the request to the View layer (response.jsp)

RequestDispatcher dispatcher = request.getRequestDispatcher("/response.jsp");

dispatcher.forward(request, response);

}

}

6-21

6 Deploying a Java Component Over the Web

Adapt the HTML to Display the WebFigure
Customize the response.jsp code in webfigures.tld to display the
WebFigure to the user by doing the following:

1 Copy webfigures.tld from
matlabroot/toolbox/javabuilder/webfigures/webfigures.tld to the
directory WEB-INF/ under the Web application’s directory tree.

2 Add the following declaration to reference webfigures.tld in the file
response.jsp:

<%@ taglib prefix="wf" uri="/WEB-INF/webfigures.tld" %>

3 Add the following web-figure tag to display the figure:

<wf:web-figure name="UserPlot" scope="session" root="WebFigures"
width="100%" height="100%"/>

When finished, the response.jsp page code should look like this:

<%@ taglib prefix="wf" uri="/WEB-INF/webfigures.tld" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<head><title>MATLAB WebFigures Demo</title></head>

<body>

<table border=0 cellspacing=2 cellpadding=0 style="width:100%;height:100%">

<tr><td>

Use the console below to interact with the surface plot.

</td></tr>

<tr><td height=100%>

<wf:web-figure name="UserPlot" scope="session" root="WebFigures"

width="100%" height="100%"/>

</td></tr>

</table>

</body>

</html>

6-22

Delivering Interactive Graphics Over the Web with WebFigures

Add Servlet Mapping for the WebFiguresServlet
Add the following mapping to WEB-INF/web.xml so that the Servlet can locate
the WebFigure:

<servlet>
<servlet-name>WebFigures</servlet-name>
<servlet-class>

com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>WebFigures</servlet-name>
<url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

Afterwards, the complete WEB-INF/web.xml file should look similar to this:

<?xml version="version_number" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet>

<servlet-name>ModelRunnerServlet</servlet-name>

<servlet-class>ModelRunnerServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>ModelRunnerServlet</servlet-name>

<url-pattern>/run_model</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>WebFigures</servlet-name>

<servlet-class>

com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>WebFigures</servlet-name>

<url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

</web-app>

6-23

6 Deploying a Java Component Over the Web

Add the index.html to Create the Point of Entry for the
Application
Add the following index.html code:

<html>
<head><title>Welcome to the MATLAB WebFigures demo</title></head>
<body>Click here to begin.</body>
</html>

End-User Interaction with WebFigures
An end-user can interact with a deployed WebFigure. They can use the
dynamic menu interface to:

• Zoom (increase or decrease the size of the figure)

• Pan (change placement of figure on screen)

• Rotate (manipulate a figure to see all perspectives)

To use the dynamic menu interface, hover the mouse over the top of the
WebFigure until you see three icons: a magnifying glass (zoom icon) a hand
(pan icon) and a circle with a wraparound arrow (rotation icon). Click on
the icon that corresponds to the action you want to accomplish and use the
mouse to manipulate the figure.

Note Currently, the WebFigures axis can only accommodate one subplot.

6-24

Delivering Interactive Graphics Over the Web with WebFigures

The following limitations currently exist from the end-user interface:

• Guide GUIs cannot be deployed as WebFigures

• Multiple sub-plotting in figures is available, but it is not possible to interact
with all sub-plots.

6-25

6 Deploying a Java Component Over the Web

Creating Scalable Web Applications With RMI

In this section...

“Using RMI” on page 6-26

“Before You Begin” on page 6-27

“Running Client and Server On a Single Machine” on page 6-27

“Running Client and Server On Separate Machines” on page 6-30

Using RMI
You can expand your application’s throughput capacity by taking advantage
of Java Builder’s use of RMI, Java’s native remote procedure call (RPC)
mechanism. Java Builder’s implementation of RMI technology provides for
automatic generation of interface code to enable components to be started
in separate processes, on one or more computers, making your applications
scalable and adaptable to future performance demands.

The following example utilizes RMI in the following ways:

• Running a client and server on a single machine

• Running a client on one machine and a server on another

Note While running on UNIX, ensure you use : as the path separator in
calls to java and javac. ; is used as a path separator only on Windows.

6-26

Creating Scalable Web Applications With RMI

Before You Begin
See the VarArg Web demo section “Before You Begin” on page 6-2 for
information on properly setting up your Java environment before you run
the example in this section.

Running Client and Server On a Single Machine
The following example shows how two separate processes can be run to
initialize MATLAB struct arrays.

1 Compile the Java Builder component by issuing the following at the
MATLAB Command Prompt:

mcc -W 'java:dataTypesComp,dataTypesClass' createEmptyStruct.m

6-27

6 Deploying a Java Component Over the Web

updateField.m -v

2 Compile the server Java code by issuing the following javac command.
Ensure there are no spaces between javabuilder.jar; and directory
containing component.

javac -classpath

matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

directory_containing_component\dataTypesComp.jar

DataTypesServer.java

3 Compile the client Java code by issuing the following javac command.
Ensure there are no spaces between javabuilder.jar; and directory
containing component.

javac -classpath

matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

directory containing component\dataTypesComp.jar

DataTypesClient.java

4 Run the client and server as follows:

a Open two command windows on DOS or UNIX, depending on what
platform you are using.

b If running Windows, ensure that matlabroot/bin/arch is defined
on the system path. If running UNIX, ensure LD_LIBRARY_PATH and
DYLD_LIBRARY_PATH are set properly.

c Run the server by issuing the following java command. Ensure there
are no spaces between dataTypesComp.jar; and matlabroot.

java -classpath

.;directory_containing_component\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar

-Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar

file:///directory_containing_component/dataTypesComp.jar" DataTypesServer

d Run the client by issuing the following java command. Ensure there are
no spaces between dataTypesComp.jar; and matlabroot.

java -classpath

6-28

Creating Scalable Web Applications With RMI

.;directory_containing_component\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar

DataTypesClient

5 If successful, the following output appears in the command window
running the server:

Please wait for the server registration notification.

Server registered and running successfully!!

EVENT 1: Initializing the structure on server

and sending it to client:

Initialized empty structure:

Name: []

Address: []

##################################

EVENT 3: Partially initialized structure as received by server:

Name: []

Address: [1x1 struct]

Address field as initialized from the client:

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

##################################

EVENT 4: Updating 'Name' field before sending the

structure back to the client:

Name: 'The MathWorks'

Address: [1x1 struct]

##################################

6-29

6 Deploying a Java Component Over the Web

If successful, the following output appears in the command window
running the client:

Running the client application!!

EVENT 2: Initialized structure as received in client applications:

Name: []

Address: []

Updating the 'Address' field to :

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

#################################

EVENT 5: Final structure as received by client:

Name: 'The MathWorks'

Address: [1x1 struct]

Address field:

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

#################################

Running Client and Server On Separate Machines
To implement RMI with a client on one machine and a server on another,
you must:

6-30

Creating Scalable Web Applications With RMI

• Change how the server is bound to the system registry

• Redefine how the client accesses the server.

After this is done, follow the steps in “Running Client and Server On a Single
Machine” on page 6-27 .

6-31

6 Deploying a Java Component Over the Web

6-32

7

Reference Information for
Java

Requirements for MATLAB Builder
for Java (p. 7-2)

Software requirements for using
MATLAB Builder for Java

Data Conversion Rules (p. 7-7) Details about the way that MATLAB
Builder for Java handles data

Programming Interfaces Generated
by Java Builder (p. 7-11)

Details about the function signatures
for methods that MATLAB Builder
for Java creates

MWArray Class Specification
(p. 7-16)

Link to class information

Using the Command-Line Interface
(p. 7-17)

Using the mcc command, instead of
the GUI, to build Java objects

7 Reference Information for Java

Requirements for MATLAB Builder for Java

In this section...

“System Requirements” on page 7-2

“Limitations and Restrictions” on page 7-2

“Settings for Environment Variables (Development Machine)” on page 7-2

System Requirements
System requirements and restrictions on use for MATLAB Builder for Java
are as follows:

• All requirements for MATLAB Compiler; see “Installation and
Configuration” in the MATLAB Compiler documentation.

• Java Development Kit (JDK) 1.4 or later must be installed.

• Java Runtime Environment (JRE) that is used by MATLAB and MCR.

Note The supported JRE version is 1.6.0. To find out what JRE you
are using, refer to the output of 'version -java' in MATLAB or
refer to the jre.cfg file in matlabroot/sys/java/jre/<arch> or
mcrroot/sys/java/jre/<arch>.

Limitations and Restrictions
In general, limitations and restrictions on the use of Java Builder are the
same as those for MATLAB Compiler. See “Limitations and Restrictions” in
the MATLAB Compiler documentation for details.

Settings for Environment Variables (Development
Machine)
Before starting to program, you must set the environment on your
development machine to be compatible with MATLAB Builder for Java.

Specify the following environment variables:

7-2

Requirements for MATLAB Builder for Java

• “JAVA_HOME Variable” on page 7-3

• “Java CLASSPATH Variable” on page 7-4

• “Native Library Path Variables” on page 7-6

JAVA_HOME Variable
Java Builder uses the JAVA_HOME variable to locate the Java Software
Development Kit (SDK) on your system. It also uses this variable to set the
versions of the javac.exe and jar.exe files it uses during the build process.

Note If you do not set JAVA_HOME, Java Builder assumes that \jdk\bin
is on the system path.

Setting JAVA_HOME on Windows (Development Machine). If you are
working on Windows, set your JAVA_HOME variable by entering the following
command in your DOS command window. (In this example, your Java SDK is
installed in directory C:\java\jdk\j2sdk1.6.0.)

set JAVA_HOME=C:\java\jdk\j2sdk1.6.0

Alternatively, you can add jdk_directory/bin to the system path. For
example:

set PATH=%PATH%;c:\java\jdk\j2sdk1.6.0\bin

You can also set these variables globally using the Windows Control Panel.
Consult your Windows documentation for instructions on setting system
variables.

Note The supported JRE version is 1.6.0. To find out what JRE you are using,
refer to the output of 'version -java' in MATLAB or refer to the jre.cfg file
in matlabroot/sys/java/jre/<arch> or mcrroot/sys/java/jre/<arch>.

7-3

7 Reference Information for Java

Setting JAVA_HOME on UNIX (Development Machine). If you are
working on a UNIX system, set your JAVA_HOME variable by entering the
following commands at the command prompt. (In this example, your Java
SDK is installed in directory /java/jdk/j2sdk1.6.0.)

setenv JAVA_HOME /java/jdk/j2sdk1.6.0

Alternatively, you can add jdk_directory\bin to the system path.

Java CLASSPATH Variable
To build and run a Java application that uses a Java Builder generated
component, the system needs to find .jar files containing the MATLAB
libraries and the class and method definitions that you have developed and
built with Java Builder. To tell the system how to locate the .jar files it
needs, specify a classpath either in the javac command or in your system
environment variables.

Java uses the CLASSPATH variable to locate user classes needed to compile
or run a given Java class. The class path contains directories where all the
.class and/or .jar files needed by your program reside. These .jar files
contain any classes that your Java class depends on.

When you compile a Java class that uses classes contained in the
com.mathworks.toolbox.javabuilder package, you need to include a file
called javabuilder.jar on the Java class path. This file comes with Java
Builder; you can find it in the following directory:

matlabroot/toolbox/javabuilder/jar % (development machine)
mcrroot/toolbox/javabuilder/jar % (end-user machine)

where matlabroot refers to the root directory into which the MATLAB
installer has placed the MATLAB files, and mcrroot refers to the root
directory under which mcr is installed. Java Builder automatically
includes this .jar file on the class path when it creates the component.
To use a class generated by Java Builder, you need to add this
matlabroot/toolbox/javabuilder/jar/javabuilder.jar to the class path.

In addition, you need to add to the class path the .jar file created by Java
Builder for your compiled .class files.

7-4

Requirements for MATLAB Builder for Java

Example: Setting CLASSPATH on Windows. Suppose your MATLAB
libraries are installed in C:\matlabroot\bin\win32, and your component
.jar files are in C:\mycomponent.

Note For matlabroot substitute the MATLAB root directory on your system.
Type matlabroot to see this directory name.

To set your CLASSPATH variable on your development machine, enter the
following command at the DOS command prompt:

set CLASSPATH=.;C:\matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

C:\mycomponent\mycomponent.jar

Alternatively, if the Java SDK is installed, you can specify the class path on
the Java command line as follows. When entering this command, ensure
there are no spaces between pathnames in the matlabroot argument.
For example, there should be no space between javabuilder.jar; and
c:\mycomponent\mycomponent.jar in the example below.

javac

-classpath .;C:\matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

C:\mycomponent\mycomponent.jar usemyclass.java

where usemyclass.java is the file to be compiled.

It is recommended that you globally add any frequently used class paths to
the CLASSPATH system variable via the Windows Control Panel.

Example: Setting CLASSPATH on UNIX (Development Machine).
Suppose your UNIX environment is as follows:

• Your MATLAB libraries are installed in /matlabroot/bin/arch, (where
arch is either glnx86, glnxa64, mac, or sol64, depending on the operating
system of the machine.

• Your component .jar files are in /mycomponent.

To set your CLASSPATH variable, enter the following command at the prompt:

7-5

7 Reference Information for Java

setenv CLASSPATH .:/matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

/mycomponent/mycomponent.jar

Like Windows, you can specify the class path directly on the Java command
line. To compile usemyclass.java, type the following:

javac -classpath
.:/matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
/mycomponent/mycomponent.jar usemyclass.java

where usemyclass.java is the file to be compiled.

Native Library Path Variables
The operating system uses the native library path to locate native libraries
that are needed to run your Java class. See the following list of variable
names according to operating system:

Windows PATH

Linux LD_LIBRARY_PATH

Solaris LD_LIBRARY_PATH

Macintosh DYLD_LIBRARY_PATH

For information on how to set these path variables, see the following
topics in the “Standalone Applications” section of the MATLAB Compiler
documentation:

• See “Testing the Application” for information on setting your path on a
development machine.

• See “Running the Application” for information on setting your path on
an end-user machine.

7-6

Data Conversion Rules

Data Conversion Rules

In this section...

“Java to MATLAB Conversion” on page 7-7

“MATLAB to Java Conversion” on page 7-9

“Unsupported MATLAB Array Types” on page 7-10

Java to MATLAB Conversion
The following table lists the data conversion rules for converting Java data
types to MATLAB types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

When calling an MWArray class method constructor, supplying a specific data
type causes Java Builder to convert to that type instead of the default.

Java to MATLAB Conversion Rules

Java Type MATLAB Type

double double

float single

byte int8

int int32

short int16

long int64

char char

7-7

7 Reference Information for Java

Java to MATLAB Conversion Rules (Continued)

Java Type MATLAB Type

boolean logical

java.lang.Double double

java.lang.Float single

java.lang.Byte int8

java.lang.Integer int32

java.lang.Long int64

java.lang.Short int16

java.lang.Number double

Note Subclasses of java.lang.Number not listed above are
converted to double.

java.lang.Boolean logical

java.lang.Character char

java.lang.String char

Note A Java string is converted to a 1-by-N array of char
with N equal to the length of the input string.

An array of Java strings (String[]) is converted to an M-by-N
array of char, with M equal to the number of elements in the
input array and N equal to the maximum length of any of
the strings in the array.

Higher dimensional arrays of String are converted similarly.

In general, an N-dimensional array of String is converted
to an N+1 dimensional array of char with appropriate zero
padding where supplied strings have different lengths.

7-8

Data Conversion Rules

MATLAB to Java Conversion
The following table lists the data conversion rules for converting MATLAB
data types to Java types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

MATLAB to Java Conversion Rules

MATLAB Type Java Type (Primitive) Java Type (Object)

cell N/A Object

Note Cell arrays are constructed and accessed as
arrays of MWArray.

structure N/A Object

Note Structure arrays are constructed and
accessed as arrays of MWArray.

char char java.lang.Character

double double java.lang.Double

single float java.lang.Float

int8 byte java.lang.Byte

int16 short java.lang.Short

int32 int java.lang.Integer

int64 long java.lang.Long

uint8 byte java.lang.ByteJava has no unsigned type
to represent the uint8 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

7-9

7 Reference Information for Java

MATLAB to Java Conversion Rules (Continued)

MATLAB Type Java Type (Primitive) Java Type (Object)

uint16 short java.lang.shortJava has no unsigned type
to represent the uint16 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

uint32 int java.lang.IntegerJava has no unsigned type
to represent the uint32 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

uint64 long java.lang.LongJava has no unsigned type
to represent the uint64 used in MATLAB.
Construction of and access to MATLAB arrays of
an unsigned type requires conversion.

logical boolean java.lang.Boolean

Function handle Not supported

Java class Not supported

User class Not supported

Unsupported MATLAB Array Types
Java has no unsigned types to represent the uint8, uint16, uint32, and
uint64 types used in MATLAB. Construction of and access to MATLAB
arrays of an unsigned type requires conversion.

7-10

Programming Interfaces Generated by Java Builder

Programming Interfaces Generated by Java Builder

In this section...

“APIs Based on MATLAB Function Signatures” on page 7-11

“Standard API” on page 7-12

“mlx API” on page 7-14

“Code Fragment: Signatures Generated for myprimes Example” on page
7-14

APIs Based on MATLAB Function Signatures
Java Builder generates two kinds of interfaces to handle MATLAB function
signatures.

• A standard signature in Java.

This interface specifies input arguments for each overloaded method as
one or more input arguments of class java.lang.Object or any subclass
(including subclasses of MWArray). The standard interface specifies return
values, if any, as a subclass of MWArray.

• mlx API

This interface allows the user to specify the inputs to a function as an
Object array, where each array element is one input argument. Similarly,
the user also gives the mlx interface a preallocated Object array to hold
the outputs of the function. The allocated length of the output array
determines the number of desired function outputs.

The mlx interface may also be accessed using java.util.List containers
in place of Object arrays for the inputs and outputs. Note that if List
containers are used, the output List passed in must contain a number of
elements equal to the desired number of function outputs.

For example, this would be incorrect usage:

java.util.List outputs = new ArrayList(3);
myclass.myfunction(outputs, inputs); // outputs contains 0 elements!

And this would be the correct usage:

7-11

7 Reference Information for Java

java.util.List outputs = Arrays.asList(new Object[3]);
myclass.myfunction(outputs, inputs); // ok, list contains 3 elements

Typically you use the standard interface when you want to call MATLAB
functions that return a single array. In other cases you probably need to
use the mlx interface.

Standard API
The standard calling interface returns an array of one or more MWArray
objects.

The standard API for a generic function with none, one, more than one, or a
variable number of arguments, is shown in the following table.

Arguments API to Use

Generic MATLAB function
function [Out1, Out2, ...,

varargout] =
foo(In1, In2, ...,
InN, varargin)

API if there are no input
arguments public Object[] foo(

int numArgsOut
)

API if there is one input
argument public Object[] foo(

int numArgsOut,
Object In1
)

7-12

Programming Interfaces Generated by Java Builder

Arguments API to Use

API if there are two to N
input arguments public Object[] foo(

int numArgsOut,
Object In1,
Object In2,
...
Object InN
)

API if there are optional
arguments, represented by
the varargin argument

public Object[] foo(
int numArgsOut,
Object in1,
Object in2,
...,

Object InN,
Object varargin
)

Details about the arguments for these samples of standard signatures are
shown in the following table.

Argument Description Details About Argument

numArgsOut Number of
outputs

An integer indicating the number of
outputs you want the method to return.
To return no arguments, omit this
argument.

The value of numArgsOut must be less
than or equal to the MATLAB function
nargout.

The numArgsOut argument must always
be the first argument in the list.

7-13

7 Reference Information for Java

Argument Description Details About Argument

In1, In2,
...InN

Required input
arguments

All arguments that follow numArgsOut
in the argument list are inputs to the
method being called.

Specify all required inputs first. Each
required input must be of class MWArray
or any class derived from MWArray.

varargin Optional inputs You can also specify optional inputs if
your M-code uses the varargin input:
list the optional inputs, or put them
in an Object[] argument, placing the
array last in the argument list.

Out1, Out2,
...OutN

Output
arguments

With the standard calling interface, all
output arguments are returned as an
array of MWArrays.

mlx API
For a function with the following structure:

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

Java Builder generates the following API, as the mlx interface:

public void foo (List outputs, List inputs) throws MWException;
public void foo (Object[] outputs, Object[] inputs) throws MWException;

Code Fragment: Signatures Generated for myprimes
Example
For a specific example, look at the myprimes method. This method has one
input argument, so Java Builder generates three overloaded methods in Java.

When you add myprimes to the class myclass and build the component, Java
Builder generates the myclass.java file. A fragment of myclass.java is
listed to show the three overloaded implementations of the myprimes method
in the Java code. The first implementation shows the interface to be used if

7-14

Programming Interfaces Generated by Java Builder

there are no input arguments, the second shows the implementation to be
used if there is one input argument, and the third shows the feval interface.

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */
public void myprimes(Object[] lhs, Object[] rhs) throws MWException
{

(implementation omitted)
}

/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/
public Object[] myprimes(int nargout, Object n) throws MWException

{
(implementation omitted)

}

The standard interface specifies inputs to the function within the argument
list and outputs as return values.

Rather than returning function outputs as a return value, the feval interface
includes both input and output arguments in the argument list. Output
arguments are specified first, followed by input arguments.

See “APIs Based on MATLAB Function Signatures” on page 7-11 for details
about the interfaces.

7-15

7 Reference Information for Java

MWArray Class Specification
For complete reference information about the MWArray class hierarchy,
see com.mathworks.toolbox.javabuilder.MWArray, which is in the
matlabroot/help/toolbox/javabuilder/MWArrayAPI/ directory.

Note For matlabroot substitute the MATLAB root directory on your system.
Type matlabroot to see this directory name.

7-16

Using the Command-Line Interface

Using the Command-Line Interface
You can use the MATLAB command-line interface (or the operating system
command line), instead of the GUI to create Java objects. Do this by issuing
the mcc command with options. If you use mcc, you do not create a project.

The following table provides an overview of some mcc options related to
creating Java components, along with syntax and examples of their usage.

7-17

7 Reference Information for Java

Using the Command Line to Create Java Components

Action to Perform mcc Option to Use Description

-W java: Tells Java Builder to generate a Java component
that contains a class that encapsulates the
specified files.

Syntax
mcc -W 'java:component_name[,class_name]' file1
[file2...fileN]

component_name is a fully qualified package name for your component.
The name is a period-separated list.

class_name is the name for the Java class to be created. The default
class_name is the last item in the list specified by component_name.

file1 [file2...fileN] are M-files to be encapsulated as methods in
class_name.

Create a class
encapsulating one or
more M-files.

Example

mcc -W 'java:com.mycompany.mycomponent,myclass'
foo.m bar.m

The example creates a Java component that has a fully qualified package
name, com.mycompany.mycomponent. The component contains a single
Java class, myclass, which contains methods foo and bar.

To use myclass, place the following statement in your code:

import com.mycompany.mycomponent.myclass;

7-18

Using the Command-Line Interface

Using the Command Line to Create Java Components (Continued)

Action to Perform mcc Option to Use Description

class{...} Used with -W java:. Tells Java Builder to create
class_name, which encapsulates one or more
M-files that are specified in a comma-separated
list.

Syntax
class{class_name:file1 [file2...fileN]}

Add additional
classes to a Java
component.

Example

mcc -W 'java:com.mycompany.mycomponent,myclass'
foo.m bar.m class{myclass2:foo2.m,bar2.m}

The example creates a Java component named mycomponent with two
classes:

myclass has methods foo and bar.

myclass2 has methods foo2 and bar2.

-B Tells Java Builder to replace a specified file with
the command-line information it contains.

Syntax
mcc -B 'bundlefile'[:arg1, arg2, ..., argN]

Simplify the
command-line input
for components.

Example
Suppose a myoptions file contains

-W 'java:mycomponent,myclass'

In this case,

mcc -B 'myoptions' foo.m bar.m

produces the same results as

mcc -W 'java:[mycomponent,myclass]' foo.m bar.m

7-19

7 Reference Information for Java

Using the Command Line to Create Java Components (Continued)

Action to Perform mcc Option to Use Description

-S Tells Java Builder to create a single MCR when the
first Java class is instantiated. This MCR is reused
and shared among all subsequent class instances
within the component, resulting in more efficient
memory usage and eliminating the MCR startup
cost in each subsequent class instantiation.

By default, a new MCR instance is created for each
instance of each Java class in the component. Use
-S to change the default.

When using -S, note that all class instances
share a single MATLAB workspace and share
global variables in the M-files used to build the
component. This makes properties of a Java class
behave as static properties instead of instance-wise
properties.

Control how each
Java class uses the
MCR.

Example

mcc -S 'java:mycomponent,myclass' foo.m bar.m

The example creates a Java component called mycomponent containing
a single Java class named myclass with methods foo and bar. (See the
first example in this table).

If and when multiple instances of myclass are instantiated in an
application, only one MCR is initialized, and it is shared by all instances
of myclass.

Specify a directory
for output

-d directoryname Tells Java Builder to create a directory and copy
the output files to it. (If you use mcc instead
of the GUI, the project_directory\src and
project_directory\distrib directories are not
automatically created.)

7-20

Using the Command-Line Interface

Note All of these command-line examples produce the mycomponent.jar file
(component jar file)

Notice that the component name used to create these files is derived from the
last item on the period-separated list that specifies the fully qualified name
of the class.

7-21

7 Reference Information for Java

7-22

8

Functions — Alphabetical
List

deploytool

Purpose Open GUI for MATLAB Builder for Java and MATLAB Compiler

Syntax deploytool

Description The deploytool command opens the Deployment Tool dialog box, which
is the graphical user interface (GUI) for MATLAB Builder for Java
and for MATLAB Compiler.

8-2

A

Examples

Use this list to find examples in the documentation.

A Examples

Handling Data
“Code Fragment: Passing an MWArray” on page 3-9
“Code Fragment: Passing a Java Double Object” on page 3-10
“Code Fragment: Passing an MWArray” on page 3-10
“Code Fragment: Passing Variable Numbers of Inputs” on page 3-12
“Code Fragment: Passing Array Inputs” on page 3-14
“Code Fragment: Passing a Variable Number of Outputs” on page 3-14
“Code Fragment: Passing Optional Arguments with the Standard
Interface” on page 3-15
“Code Fragment: Using MWArray Query” on page 3-18
“Code Fragment: Using toTypeArray Methods” on page 3-20
“Handling Data Conversion Between Java and MATLAB” on page 3-38
“Examples of Using set” on page 4-19
“Examples of Using get” on page 4-20
“Examples of Using set and get Methods” on page 4-26
“Code Fragment: Signatures Generated for myprimes Example” on page
7-14

Handling Errors
“Code Fragment: Handling an Exception in the Called Function” on page
3-29
“Code Fragment: Handling an Exception in the Calling Function” on page
3-30
“Code Fragment: Catching General Exceptions” on page 3-31
“Code Fragment: Catching Multiple Exception Types” on page 3-32

Handling Memory
“Code Fragment: Use try-finally to Ensure Resources Are Freed” on page
3-36

A-2

COM Components

COM Components
“Blocking Execution of a Console Application that Creates Figures” on
page 3-42

Sample Applications (Java)
“Plot Example” on page 5-2
“Spectral Analysis Example” on page 5-8
“Matrix Math Example” on page 5-16
“Phonebook Example” on page 5-28
“Buffered Image Creation Example” on page 5-37
“Optimization Example” on page 5-42

A-3

A Examples

A-4

Index

IndexA
API

data conversion classes 3-8
MATLAB Builder for Java 4-1

arguments
optional 3-11

standard interface 3-15
optional inputs 3-12
optional outputs 3-14
passing 3-8

array API
overview 4-2

array inputs
passing 3-14

arrays
cell 4-31

constructing 4-32
character 4-26

constructing 4-27
logical 4-22

constructing 4-22
numeric 4-8

constructing 4-8
struct 4-37

B
build output

componentLibInfo.java 2-10

C
calling interface

standard 7-12
calling methods 1-15
cell arrays 4-31

constructing 4-32
character arrays 4-26

constructing 4-27
checked exceptions

exceptions
checked 3-28

in called function 3-29
in calling function 3-30

classes
API utility 3-8
calling methods of a 1-15
creating an instance of 1-15 3-4
importing 1-14

classid 4-4
mwarray 4-51
mwcellarray 4-153
mwchararray 4-125
mwlogicalarray 4-112
mwnumericarray 4-83
mwstructarray 4-136

classpath variable 7-4
clone

mwarray 4-60
mwcellarray 4-161
mwchararray 4-130
mwlogicalarray 4-118
mwnumericarray 4-98
mwstructarray 4-147

columnindex 4-5
mwarray 4-66

com.mathworks.toolbox.javabuilder.MWArray 4-1
compareto

mwarray 4-61
mwcellarray 4-162
mwchararray 4-131
mwlogicalarray 4-119
mwnumericarray 4-99
mwstructarray 4-148

complexity
mwnumericarray 4-83

concepts
data conversion classes 2-5
project 2-2

constructing

Index-1

Index

cell arrays 4-32
character arrays 4-27
logical arrays 4-22
mwarrays 4-48
mwcellarrays 4-150
mwchararrays 4-122
mwlogicalarrays 4-106
mwnumericarrays 4-69
mwstructarrays 4-132
numeric arrays 4-8
sparse arrays 4-15

converting characters to MATLAB char array 7-8
converting data 3-9

Java to MATLAB 7-7
MATLAB to Java 7-9

converting strings to MATLAB char array 7-8
create phonebook example 5-28
create plot example 5-2
creating objects 1-15 3-4
CTF Archive

Controlling management and storage
of. 3-47

Embedded option (default) 2-4

D
data conversion 3-9

characters, strings 7-8
Java to MATLAB 7-7
MATLAB to Java 7-9
rules for Java components 7-7
unsigned integers 7-10

data conversion classes 4-1

mwarray 4-48
comparing 4-59
constructors 4-48
converting 4-59
copying 4-59
disposing 4-48
get information on 4-50
get, set 4-54
sparse 4-64

mwcellarray 4-149
comparing 4-161
constructors 4-150
converting 4-161
copying 4-161
disposing 4-151
get information on 4-152
get, set 4-154

mwchararray 4-121
comparing 4-130
constructors 4-122
converting 4-130
copying 4-130
creating 4-123
disposing 4-123
get information on 4-125
get, set 4-126

mwclassid 4-163
fields 4-163
methods 4-165

mwcomplexity 4-166
fields 4-166
methods 4-167

Index-2

Index

mwlogicalarray 4-105
comparing 4-118
constructors 4-106
converting 4-118
copying 4-118
creating 4-107
disposing 4-107
get information on 4-112
get, set 4-114
sparse 4-121

mwnumericarray 4-69 4-103
comparing 4-98
constants 4-101
constructors 4-69
converting 4-98
copying 4-98
creating 4-74
disposing 4-74
get information on 4-82
get, set: imaginary 4-90
get, set: real 4-86
sparse 4-101

mwstructarray 4-132
comparing 4-146
constructors 4-132
converting 4-146
copying 4-146
disposing 4-134
get information on 4-135
get, set 4-138

data conversion rules 3-38
dispose

mwarray 4-49
mwcellarray 4-152
mwchararray 4-124
mwlogicalarray 4-111
mwnumericarray 4-82
mwstructarray 4-134

disposearray 4-5
mwarray 4-49

mwcellarray 4-152
mwchararray 4-125
mwlogicalarray 4-111
mwnumericarray 4-82
mwstructarray 4-135

disposing mwarrays 4-48
disposing of mwnumericarrays 4-74

E
environment variables

classpath 7-4
java_home 7-3
ld_library_path 7-6
path 7-6
setting 7-2

equals
mwarray 4-62
mwcellarray 4-162
mwchararray 4-131
mwclassid 4-165
mwlogicalarray 4-119
mwnumericarray 4-100
mwstructarray 4-148

error handling 3-28
example applications

Java 5-1
examples 5-28

Java create plot 5-2
exceptions 3-28

catching 3-31 to 3-32
checked

in called function 3-29
in calling function 3-30

general 3-31
unchecked 3-31

F
factory methods

Index-3

Index

of mwcellarray 4-34
of mwchararray 4-30
of mwlogicalarray 4-25
of mwnumericarray 4-17

fieldnames
mwstructarray 4-136

Figures
Keeping open by blocking execution of

console application 3-42
finalization 3-37
freeing native resources

try-finally 3-36

G
garbage collection 3-34
get 4-5

mwarray 4-54
mwcellarray 4-34 4-154
mwchararray 4-30 4-126
mwlogicalarray 4-25 4-114
mwnumericarray 4-17 4-87

example 4-20
mwstructarray 4-139

getboolean
mwlogicalarray 4-115

getbyte
mwnumericarray 4-89

getbytedata 4-105
getcell

mwcellarray 4-156
getchar

mwchararray 4-127
getdata 4-5

mwarray 4-56
mwcellarray 4-37 4-157
mwchararray 4-126
mwlogicalarray 4-114
mwnumericarray 4-87
mwstructarray 4-141

getdimensions 4-5
mwarray 4-51
mwcellarray 4-153
mwchararray 4-126
mwlogicalarray 4-114
mwnumericarray 4-83
mwstructarray 4-137

getdouble
mwnumericarray 4-87

getdoubledata 4-105
geteps

mwnumericarray 4-102
getfield

mwstructarray 4-142
getfloat

mwnumericarray 4-88
getfloatdata 4-105
getiamgbyte

mwnumericarray 4-96
getimag

mwnumericarray 4-92
getimagbytedata 4-105
getimagdata 4-105

mwnumericarray 4-93
getimagdouble

mwnumericarray 4-94
getimagdoubledata 4-105
getimagfloat

mwnumericarray 4-95
getimagfloatdata 4-105
getimagint

mwnumericarray 4-95
getimagintdata 4-105
getimaglong

mwnumericarray 4-95
getimaglongdata 4-105
getimagshort

mwnumericarray 4-95
getimagshortdata 4-105
getinf

Index-4

Index

mwnumericarray 4-102
getint

mwnumericarray 4-88
getintdata 4-105
getlong

mwnumericarray 4-88
getlongdata 4-105
getnan

mwnumericarray 4-103
getshort

mwnumericarray 4-88
getshortdata 4-105
getsize

mwclassid 4-165

H
hashcode

mwarray 4-62
mwcellarray 4-162
mwchararray 4-131
mwclassid 4-165
mwlogicalarray 4-120
mwnumericarray 4-100
mwstructarray 4-148

I
images 3-39
importing classes 1-14
isempty 4-5

mwarray 4-52
mwcellarray 4-154
mwchararray 4-126
mwlogicalarray 4-114
mwnumericarray 4-83
mwstructarray 4-137

isfinite
mwnumericarray 4-83

isinf

mwnumericarray 4-84
isnan

mwnumericarray 4-85
isnumeric

mwclassid 4-166
issparse 4-5

mwarray 4-65

J
jagged arrays

constructing 4-11
JAR files

Java Builder’s use of 2-4
Java application

sample application
usemyclass.java 3-6

writing 5-1
Java Builder

example of deploying 1-9
java builder api

mwarray
comparing 4-59
constructors 4-48
converting 4-59
copying 4-59
disposing 4-48
get information on 4-50
get, set 4-54
sparse 4-64

mwcellarray 4-149
comparing 4-161
constructors 4-150
converting 4-161
copying 4-161
disposing 4-151
get information on 4-152
get, set 4-154

Index-5

Index

mwchararray 4-121
comparing 4-130
constructors 4-122
converting 4-130
copying 4-130
creating 4-123
disposing 4-123
get information on 4-125
get, set 4-126

mwclassid 4-163
fields 4-163
methods 4-165

mwcomplexity 4-166
fields 4-166
methods 4-167

mwlogicalarray 4-105
comparing 4-118
constructors 4-106
converting 4-118
copying 4-118
creating 4-107
disposing 4-107
get information on 4-112
get, set 4-114
sparse 4-121

mwnumericarray 4-69
comparing 4-98
constants 4-101
constructors 4-69
conversion 4-103
converting 4-98
copying 4-98
creating 4-74
disposing 4-74
get information on 4-82
get, set: imaginary 4-90
get, set: real 4-86
sparse 4-101

mwstructarray 4-132
comparing 4-146
constructors 4-132
converting 4-146
copying 4-146
disposing 4-134
get information on 4-135
get, set 4-138

Java Builder API
mwarray 4-48

Java classes 2-1
Java component

instantiating classes 3-4
Java examples 5-1
specifying 3-3

Java interfaces
mwarray 4-3

Java reflection 3-17
Java to MATLAB data conversion 7-7
java_home variable 7-3
JVM 3-34

L
ld_library_path variable 7-6
LibInfo.java 2-10
limitations 7-2

platform-specific 2-11 3-3
logical arrays 4-22

constructing 4-22

M
M-file method

myprimes.m 3-6
MATLAB Builder for Java

introduction 1-2
system requirements 7-2

MATLAB to Java data conversion 7-9
matrix math example

Index-6

Index

Java 5-16
maximumnonzeros

mwarray 4-67
MCR Component Cache

How to use 3-47
memory

preserving 3-34
memory management

native resources 3-34
method overrides

mwarray 4-3
method signatures

standard interface
method signatures 3-10 7-11

methods
adding 5-8
calling 1-15
error handling 3-28
mwarray 4-4
mwcellarray 4-34
mwchararray 4-30
mwlogicalarray 4-25
mwnumericarray 4-17
of MWArray 3-11 3-38

multidimensional numeric arrays
constructing 4-10

mwarray 4-2 4-48
comparing 4-59
constructors 4-48
converting 4-59
copying 4-59
disposing 4-48
get, set 4-54
Java interfaces 4-3
method overrides 4-3
methods of 4-4
sparse 4-64

MWArray 3-8 4-1
MWarray methods 3-11 3-38
mwarray query

return values 3-18 3-20
mwarrayget information on 4-50
mwcellarray 4-31 4-149

comparing 4-161
constructors 4-150
converting 4-161
copoying 4-161
disposing 4-151
get information on 4-152
get, set 4-154

mwcellarray methods
get 4-34
getdata 4-37
set 4-34
toarray 4-37

mwchararray 4-26 4-121
comparing 4-130
constructors 4-122
converting 4-130
copying 4-130
creating 4-123
disposing 4-123
get information on 4-125
get, set 4-126
newinstance 4-29

mwchararray methods
get 4-30
set 4-30

mwclassid
cell 4-163
char 4-164
double 4-164
fields 4-163
function 4-164
int16 4-164
int32 4-164
int64 4-164
int8 4-164
logical 4-164
methods 4-165

Index-7

Index

object 4-164
opaque 4-164
single 4-164
struct 4-164
uint16 4-164
uint32 4-164
uint64 4-164
uint8 4-164
unknown 4-165

mwcomplexity 4-166
complex 4-166
fields 4-166
methods 4-167
real 4-166

MWComponentOptions 3-47
mwjavaobjectref 3-22
mwlogicalarray 4-22 4-105

comparing 4-118
constructors 4-106
converting 4-118
copying 4-118
creating 4-107
disposing 4-107
get information on 4-112
get, set 4-114
newinstance 4-23
newsparse 4-23
sparse 4-121

mwlogicalarray methods
get 4-25
set 4-25

mwnumericarray 4-8 4-69
comparing 4-98
constants 4-101
constructors 4-69
conversion 4-103
converting 4-98
copying 4-98
creating 4-74
disposing 4-74

get information on 4-82
get, set

imaginary 4-90
real 4-86

newinstance 4-12
newsparse 4-12
sparse 4-101

mwnumericarray methods
get 4-17
set 4-17

mwstructarray 4-37 4-132
comparing 4-146
constructors 4-132
converting 4-146
copying 4-146
disposing 4-134
get information on 4-135
get, set 4-138

myprimes.m 3-6

N
native resources

dispose 3-35
finalizing 3-37

newinstance
mwchararray 4-29 4-123
mwlogicalarray 4-23 4-107
mwnumericarray 4-12 4-74

newsparse
mwlogicalarray 4-23 4-108
mwnumericarray 4-12 4-77

numberofdimensions 4-6
mwarray 4-53
mwcellarray 4-154
mwchararray 4-126
mwlogicalarray 4-114
mwnumericarray 4-86
mwstructarray 4-137

numberofelements 4-6

Index-8

Index

mwarray 4-53
mwcellarray 4-154
mwchararray 4-126
mwlogicalarray 4-114
mwnumericarray 4-86
mwstructarray 4-137

numberoffields
mwstructarray 4-137

numberofnonzeros 4-6
mwarrays 4-68

numeric arrays 4-8
constructing 4-8

numeric matrices
constructing 4-10

O
objects

creating 1-15 3-4
operating system issues 2-11 3-3
optional arguments 3-11

input 3-12
output 3-14
standard interface 3-15

P
passing arguments 3-8
passing data

matlab to java 2-9
path variable 7-6
Platform independence

MEX files 3-45
platform issues 2-11 3-3
portability 2-11 3-3
programming

overview 1-13
project

elements of 2-2

R
requirements

system 7-2
resource management 3-34
return values

handling 3-16
java reflection 3-17
mwarray query 3-18 3-20

rowindex 4-6
mwarray 4-67

S
set 4-6

mwarray 4-57
mwcellarray 4-34 4-158
mwchararray 4-30 4-128
mwlogicalarray 4-25 4-116
mwnumericarray 4-17 4-90

example 4-19
mwstructarray 4-143

setdata 4-6
setimag

mwnumericarray 4-96
setting environment variables 7-2
sharedcopy 4-7

mwarray 4-63
mwcellarray 4-162
mwchararray 4-131
mwlogicalarray 4-120
mwnumericarray 4-100
mwstructarray 4-148

sparse
mwlogicalarray 4-121
mwnumericarray 4-101

sparse arrays 4-64
constructing 4-15

standard interface 7-12
passing optional arguments 3-15

struct arrays 4-37

Index-9

Index

system requirements 7-2

T
toarray 4-7

mwarray 4-58
mwcellarray 4-37 4-160
mwchararray 4-130
mwlogicalarray 4-118
mwnumericarray 4-90
mwstructarray 4-145

tobytearray 4-104
todoublearray 4-104
tofloatarray 4-104
toimagarray 4-104

mwnumericarray 4-97
toimagbytearray 4-104
toimagdoublearray 4-104
toimagfloatarray 4-104
toimagintarray 4-104
toimaglongarray 4-104
toimagshortarray 4-104
tointarray 4-104
tolongarray 4-104
toshortarray 4-104

tostring
mwarray 4-64
mwcellarray 4-163
mwchararray 4-132
mwclassid 4-166
mwcomplexity 4-167
mwlogicalarray 4-120
mwnumericarray 4-100
mwstructarray 4-149

try-finally 3-36

U
unchecked exceptions 3-31
usage information

data conversion classes 4-1
getting started 1-1
sample Java applications 5-1

utility classes
base class 4-2
overview 4-2

W
waitForFigures 3-42

Index-10

	toc
	Getting Started
	What Is MATLAB Builder for Java?
	Before You Begin
	What You Need To Know
	Configuring Your Environment
	Setting Up Your Java Environment
	Preparing To Use the Example Files

	Starting MATLAB Builder for Java
	Overview of MATLAB Compiler
	What Is the Deployment Tool?

	Essential Steps to Deploying a Java Builder Component
	Create a Deployable Java Builder Component
	Package Your Java Component
	Distribute Your Java Component
	Customize Your Java Component

	Deploying a Component
	Magic Square Example
	Create a Deployable Java Component
	Package Your Java Application
	Developing Your Application
	Importing Classes
	Creating an Instance of the Class
	Calling Class Methods from Java

	Next Steps

	Concepts
	What Is a Project?
	Overview
	Classes and Methods
	Naming Conventions

	How Does MATLAB Builder for Java Use JAR Files?
	How Does MATLAB Builder for Java Handle Data?
	Java Builder API
	Understanding the API Data Conversion Classes
	Overview of Classes and Methods in the Data Conversion Class Hie
	Advantage of Using Data Conversion Classes

	Automatic Conversion to MATLAB Types
	Understanding Function Signatures Generated by Java Builder
	Understanding MATLAB Function Signatures
	Overloaded Methods in Java That Encapsulate M-Code

	Returning Data from MATLAB to Java

	What Happens in the Build Process?
	What Happens in the Package Process?
	How Does Component Deployment Work?

	Programming
	Import Classes
	Creating an Instance of the Class
	What is an Instance?
	Code Fragment: Instantiating a Java Class
	myprimes Function

	Passing Arguments to and from Java
	The Format
	Manual Conversion of Data Types
	Code Fragment: Using MWNumericArray

	Automatic Conversion to a MATLAB Type
	Code Fragment: Automatic Data Conversion
	Code Fragment: Passing a Java Double Object
	Code Fragment: Passing an MWArray
	Code Fragment: Calling MWArray Methods
	Changing the Default by Specifying the Type

	Specifying Optional Arguments
	Code Fragment: Passing Variable Numbers of Inputs
	Code Fragment: Passing a Variable Number of Outputs

	Handling Return Values
	Code Fragment: Using Java Reflection
	Code Fragment: Using MWArray Query
	Code Fragment: Using to Type Array Methods

	Passing Java Objects by Reference
	MATLAB Array
	Wrappering and Passing Java Objects to M-Functions with MWJavaOb
	Code Fragment: Passing a Java Object Into a Java Builder Compone
	Code Fragment: Clone an Object Inside a Builder Component
	Code Fragment: Passing a Date Into a Component and Getting a Dat
	Returning Java Objects Using unwrapJavaObjectRefs
	An Optimization Example Using MWJavaObjectRef

	Handling Errors
	Error Overview
	Handling Checked Exceptions
	Code Fragment: Handling an Exception in the Called Function
	Code Fragment: Handling an Exception in the Calling Function

	Handling Unchecked Exceptions
	Code Fragment: Catching General Exceptions
	Code Fragment: Catching Multiple Exception Types

	Managing Native Resources
	What are Native Resources?
	Using Garbage Collection Provided by the JVM
	Using the dispose Method
	Code Fragment: Using dispose
	Code Fragment: Use try-finally to Ensure Resources Are Freed

	Overriding the Object.Finalize Method

	Handling Data Conversion Between Java and MATLAB
	Overview
	Calling MWArray Methods
	Specifying the Type

	Creating Buffered Images From a MATLAB Array

	Setting Java Properties
	How to Set Java System Properties
	Ensuring a Consistent GUI Appearance
	Code Fragment: Setting DisableSetLookAndFeel

	Blocking Execution of a Console Application that Creates Figures
	waitForFigures Method
	Code Fragment: Using waitForFigures to Block Execution of a Cons

	Ensuring Multi-Platform Portability
	Using MCR Component Cache and MWComponentOptions
	MWComponentOptions
	Select Options
	Set Options
	Example: Enabling MCR Component Cache, Utilitzing CTF Content Al

	Learning About Java Classes and Methods by Exploring the Javadoc

	Using Classes and Methods
	Guidelines for Working with MWArray Classes
	Overview of the MWArray API
	Understanding the MWArray Base Class
	Accessing Elements of the Arrays
	Method Overrides Implemented by MWArray
	Java Interfaces Implemented by MWArray
	Additional MWArray Methods

	Constructing Numeric Arrays
	Overview of Constructors and Data Types
	Constructing Different Types of Numeric Arrays
	Constructing Complex Arrays
	Constructing Matrices
	Constructing N-Dimensional Arrays
	Constructing Jagged Arrays

	Using Static Factory Methods to Construct MWNumericArrays
	Constructing Sparse Arrays
	Accessing MWNumericArray Elements

	Working with Logical Arrays
	Constructing an MWLogicalArray
	Using Static Factory Methods to Create MWLogicalArrays
	Accessing MWLogicalArray Elements

	Working with Character Arrays
	Constructing an MWCharArray
	Using Static Factory Methods for Constructing MWCharArrays
	Accessing MWCharArray Elements

	Working with Cell Arrays
	Using MWCellArray Constructors
	Accessing MWCellArray Elements
	toArray and getData Methods

	Working with Struct Arrays
	Constructing an MWStructArray
	Getting Information About a Structure
	Modifying Elements in an MWStructArray
	Copying Elements from an MWStructArray
	Creating Nested Structures in an MWStructArray
	Accessing Elements in an MWStructArray

	Using Class Methods
	Using MWArray
	Constructing an MWArray
	Example . Construct an empty MWArray object:

	Methods to Create and Destroy an MWArray
	Input Parameters
	Example — Constructing an MWArray Object
	Input Parameters
	Example — Constructing an MWNumericArray Object

	Methods to Return Information About an MWArray
	Input Parameters
	Example — Getting the Class ID of an MWArray
	Input Parameters
	Example — Getting Array Dimensions of an MWArray
	Input Parameters
	Example — Testing for an Empty MWArray
	Input Parameters
	Example — Getting the Number of Dimensions of an MWArray
	Input Parameters
	Example — Getting the Number of MWArray Elements

	Methods to Get and Set Data in the MWArray
	Input Parameters
	Exceptions
	Example — Getting an MWArray Value with get
	Input Parameters
	Example — Getting an MWArray Value with getData
	Input Parameters
	Exceptions
	Example — Setting an MWArray Value
	Input Parameters
	Example — Getting an MWArray with toArray

	Methods to Copy, Convert, and Compare MWArrays
	Input Parameters
	Exceptions
	Example — Cloning an MWArray Object
	Input Parameters
	Example — Comparing MWArrays with compareTo
	Input Parameters
	Example — Comparing MWArrays with equals
	Input Parameters
	Example — Getting an MWArray Hash Code
	Input Parameters
	Example — Making a Shared Copy of an MWArray
	Input Parameters
	Example — Converting an MWArray to a String

	Methods to Use on Sparse MWArrays
	Input Parameters
	Example — Testing an MWArray for Sparseness
	Input Parameters
	Example — Getting the Column Indices of a Sparse MWArray
	Input Parameters
	Example — Getting the Row Indices of a Sparse MWArray
	Input Parameters
	Example — Getting the Maximum Number of Nonzeros in an MWArray
	Input Parameters.
	Example — Getting the Number of Nonzeros in an MWArray

	Using MWNumericArray
	Constructing an MWNumericArray
	Example — Constructing an Empty Numeric Array Object
	Exceptions
	Example — Constructing an Integer Array Object
	Example — Constructing a Complex Array Object
	Example — Constructing a Real Array of a Specific Type
	Example — Constructing a Complex Array of a Specific Type

	Methods to Create and Destroy an MWNumericArray
	Input Parameters
	Exceptions
	Example — Constructing a Numeric Array Object with newInstance
	Constructing a Sparse Matrix with No Nonzero Elements
	Constructing a Sparse Matrix of Real Numbers
	Constructing a Sparse Matrix of Complex Numbers
	Input Parameters
	Exceptions
	Example — Constructing a Sparse Array Object with newSparse
	Example — Using newSparse with Row and Column Indices
	Example — Assigning Multiple Values to a Single Array Element

	Methods to Return Information About an MWNumericArray
	Input Parameters
	Example — Testing for a Complex Array
	Input Parameters
	Example — Testing for Finite Array Values
	Input Parameters
	Example — Testing for Infinite Array Values
	Input Parameters
	Example — Testing for NaN Array Values

	Methods to Get and Set the Real Parts of an MWNumericArray
	Example — Getting a Short Value from a Numeric Array
	Example — Using get and set on a Numeric Array

	Methods to Get and Set the Imaginary Parts of an MWNumericArray
	Example — Getting the Real and Imaginary Parts of an Array
	Example — Getting Data from a Complex Array
	Example — Getting Complex Data of a Specific Type
	Exceptions
	Input Parameters
	Example — Getting Complex Data with toImagArray

	Methods to Copy, Convert, and Compare MWNumericArrays
	Input Parameters
	Exceptions
	Example — Cloning a Numeric Array Object
	Input Parameters
	Example — Making a Shared Copy of a Numeric Array Object

	Methods to Use on Sparse MWNumericArrays
	Methods to Return Special Constant Values
	Input Parameters
	Exceptions
	Input Parameters
	Exceptions
	Input Parameters
	Exceptions

	Methods to Convert Array Data to a Specific Type

	Using MWLogicalArray
	Constructing an MWLogicalArray
	Example — Constructing an Initialized Logical Array Object

	Methods to Create and Destroy an MWLogicalArray
	Input Parameters
	Exceptions
	Example — Constructing a Logical Array Object with newInstance
	Supported Prototypes
	Input Parameters
	Exceptions
	Example — Constructing a Sparse Logical Array Object

	Methods to Return Information About an MWLogicalArray
	Input Parameters
	Example — Getting the Class ID for a Logical Array Object

	Methods to Get and Set Data in an MWLogicalArray
	Input Parameters
	Exceptions
	Example — Getting a Boolean Value from a Logical Array
	Input Parameters
	Exceptions
	Example — Setting a Value in a Logical Array

	Methods to Copy, Convert, and Compare MWLogicalArrays
	Input Parameters
	Exceptions
	Example — Cloning a Logical Array Object
	Input Parameters
	Example — Making a Shared Copy of a Logical Array Object

	Methods to Use on Sparse MWLogicalArrays

	Using MWCharArray
	Constructing an MWCharArray
	Input Parameters
	Example — Constructing an Initialized Character Array Object

	Methods to Create and Destroy an MWCharArray
	Input Parameters
	Example — Constructing a Character Array Object with newInstance

	Methods to Return Information About an MWCharArray
	Input Parameters
	Example — Getting the Class ID of a Character Array

	Methods to Get and Set Data in the MWCharArray
	Input Parameters
	Exceptions
	Example — Getting Character Array Data with getChar
	Input Parameters
	Exceptions
	Example — Setting Values in a Character Array

	Methods to Copy, Convert, and Compare MWCharArrays
	Input Parameters
	Example — Cloning a Character Array Object
	Input Parameters
	Example — Making a Shared Copy of a Character Array Object

	Using MWStructArray
	Constructing an MWStructArray
	Input Parameters
	Example — Constructing a Structure Array Object

	Methods to Destroy an MWStructArray
	Input Parameters
	Example — Disposing of a Structure Array Object

	Methods to Return Information About an MWStructArray
	Input Parameters
	Example — Getting the Class ID of a Structure Array
	Input Parameters
	Example — Getting the Field Names of a Structure Array
	Input Parameters
	Example — Getting the Number of Fields in a Structure Array

	Methods to Get and Set Data in the MWStructArray
	Input Parameters
	Exceptions
	Example — Getting Structure Array Data with get
	Input Parameters
	Example — Getting Structure Array Data with getData
	Input Parameters
	Exceptions
	Input Parameters
	Exceptions
	Example — Setting Values in a Structure Array
	Input Parameters
	Example — Getting Structure Array Data with toArray

	Methods to Copy, Convert, and Compare MWStructArrays
	Input Parameters
	Exceptions
	Example — Cloning a Structure Array Object
	Input Parameters
	Example — Making a Shared Copy of a Structure Array Object

	Using MWCellArray
	Constructing an MWCellArray
	Input Parameters
	Exceptions
	Example — Constructing an Empty Cell Array Object
	Example — Constructing an Initialized Cell Array Object

	Methods to Destroy an MWCellArray
	Input Parameters
	Example — Disposing of a Cell Array Object

	Methods to Return Information About an MWCellArray
	Input Parameters
	Example — Getting the Class ID of a Cell Array

	Methods to Get and Set Data in the MWCellArray
	Input Parameters
	Exceptions
	Example — Getting Data from a Cell Array with get
	Input Parameters
	Exceptions
	Input Parameters
	Example — Getting Cell Array Data with getData
	Input Parameters
	Exceptions
	Example — Setting Values in a Cell Array
	Input Parameters
	Example — Getting Cell Array Data with toArray

	Methods to Copy, Convert, and Compare MWCellArrays
	Input Parameters
	Exceptions
	Example — Cloning a Cell Array Object
	Input Parameters
	Example — Making a Shared Copy of a Cell Array Object

	Using MWClassID
	Fields of MWClassID
	Example — Specifying an MWClassID Value

	Using MWComplexity
	Fields of MWComplexity
	Example – Determining the Complexity of an Array

	Sample Java Applications
	Plot Example
	The purpose of the example is to show you how to do the followin
	Plot Example: Step-by-Step Procedure
	createplot.java

	Spectral Analysis Example
	The purpose of the example is to show you the following:
	computefft.m
	plotfft.m
	Spectral Analysis Example: Step-by-Step Procedure
	powerspect.java

	Matrix Math Example
	Example Overview
	MATLAB Functions to Be Encapsulated
	cholesky.m
	ludecomp.m
	qrdecomp.m
	Step-by-Step Procedure
	getfactor.java
	Output for the Matrix Math Example
	Output for a Sparse Matrix
	Understanding the getfactor Program

	Phonebook Example
	The makephone Function
	Phonebook Example: Step-by-Step Procedure
	getphone.java

	Buffered Image Creation Example
	Optimization Example
	About This Example
	The OptimDemo Component
	Optimization Example: Step-by-Step Procedure

	Deploying a Java Component Over the Web
	Creating a Deployable Web Application
	Example Overview
	Before You Begin
	Ensure You Have the Required Products
	Ensure Your Web Server is Java Compliant
	Install the javabuilder.jar Library

	Download the Demo Files
	Contents of the Demo Files

	Build Your Java Component
	Compile Your Java Code
	Generating the Web Archive (WAR) File
	Running the Web Deployment Demo
	Using the Web Application

	Delivering Interactive Graphics Over the Web with WebFigures
	Before You Begin
	Download the Example Files
	The WebFigures Feature
	Preparing to Implement WebFigures
	Modifying the WebFigure Creation Code
	Modify the Code to Attach the WebFigure to the J2EE Context Scop
	Embed the WebFigure as Part of the Response HTML Page
	Enable User Interaction by Creating Mapping in a Web Deployment
	Enable Disposal of the WebFigure

	Implementing WebFigures
	Compile the M-Code Into a Java Object
	Write Code to Instantiate the Java Object and Create the WebFigu
	Adapt the HTML to Display the WebFigure
	Add Servlet Mapping for the WebFiguresServlet
	Add the index.html to Create the Point of Entry for the Applicat

	End-User Interaction with WebFigures

	Creating Scalable Web Applications With RMI
	Using RMI
	Before You Begin
	Running Client and Server On a Single Machine
	Running Client and Server On Separate Machines

	Reference Information for Java
	Requirements for MATLAB Builder for Java
	System Requirements
	Limitations and Restrictions
	Settings for Environment Variables (Development Machine)
	JAVA_HOME Variable
	Java CLASSPATH Variable
	Native Library Path Variables

	Data Conversion Rules
	Java to MATLAB Conversion
	MATLAB to Java Conversion
	Unsupported MATLAB Array Types

	Programming Interfaces Generated by Java Builder
	APIs Based on MATLAB Function Signatures
	Standard API
	mlx API
	Code Fragment: Signatures Generated for myprimes Example

	MWArray Class Specification
	Using the Command-Line Interface

	Functions — Alphabetical List
	Examples
	Handling Data
	Handling Errors
	Handling Memory
	COM Components
	Sample Applications (Java)

	Index

	tables
	Overrides
	Java Interfaces Implemented by MWArray
	Java to MATLAB Conversion Rules
	MATLAB to Java Conversion Rules
	Using the Command Line to Create Java Components

